Пример #1
0
def test_acceptance(validator: CompoundValidator):
    val = Marker(color='green', size=10)
    res = validator.validate_coerce(val)

    assert isinstance(res, Marker)
    assert res.color == 'green'
    assert res.size == 10
    def plot_residuals(self, data, title):
        ''' Plots the residuals of the predicted values
            
            Parameters
            ==========
            data: pandas dataframe
                Dataframe that contains the actual (y) and predicted (y_pred) values.
        '''

        data.iplot(data=[
            dict(y=data['y'] - data['y_pred'],
                 x=data['Dates'],
                 name='Actual',
                 mode='markers',
                 marker=Marker(color='Black', size=3, opacity=1),
                 color='Gray',
                 showlegend=False),
        ],
                   title=title,
                   dimensions=(700, 400),
                   vspan=dict(x0=datetime.datetime.strptime(
                       self.testing_cutoff, "%Y%m%d"),
                              x1=data['Dates'].max(),
                              color='Black',
                              width=0,
                              fill=False,
                              opacity=0.1))
def test_acceptance(validator):
    val = Marker(color="green", size=10)
    res = validator.validate_coerce(val)

    assert isinstance(res, Marker)
    assert res.color == "green"
    assert res.size == 10
Пример #4
0
def make_marker(obs, index):
    """
    :param
        obs: Observation point containing 'value', 'index' and 'name'
        color: Same color as belonging line
    :returns: a marker for the value of the given observation.
    """
    return Scatter(y=[obs['value']],
                   x=[index],
                   showlegend=False,
                   mode='markers',
                   marker=Marker(color='#000', ),
                   hoverlabel=Hoverlabel(bgcolor='#000'))
Пример #5
0
def compare_portfolios(request):
    if request.method == "POST":
        portfolios = []
        date_from = timezone.datetime(1999, 1, 1).date()
        for portfolio in Portfolio.objects.all():
            if request.POST.get(str(portfolio.id)) is not None:
                portfolios.append(portfolio)
                delta = date_from - portfolio.creation_date
                if delta.days < 0:
                    date_from = portfolio.creation_date

        stocks_list, min_create_date = get_all_tickers(portfolios), date_from
        download_stocks(stocks_list, min_create_date)

        R = [[
            portfolio.name,
            PortfolioHandler(portfolio).getRByDates(date_from)
        ] for portfolio in portfolios]

        fig = go.Figure()

        for name, r in R:
            scatter = go.Scatter(x=r[0],
                                 y=r[1],
                                 mode='markers+lines',
                                 marker=Marker(symbol='0'),
                                 opacity=0.8,
                                 name=name)
            fig.add_trace(scatter)
        plt_div = plot(fig, output_type='div')

        return render(
            request, 'pages/compare.html',
            get_full_context(
                request, {
                    'page': COMPARE_PORTFOLIOS_PAGE_NAME,
                    'portfolios': Portfolio.objects.all(),
                    'html': plt_div
                }))
    return render(
        request, 'pages/compare.html',
        get_full_context(
            request, {
                'page': COMPARE_PORTFOLIOS_PAGE_NAME,
                'portfolios': Portfolio.objects.all(),
            }))
    def plot_act_exp(self, data, title):
        ''' Plots the actuals vs the expected values
            
            Parameters
            ==========
            data: pandas dataframe
                Dataframe that contains the actual (y) and
                the predicted (y_pred) values with the standard deviation y_std
                
        '''

        data.iplot(data=[
            dict(y=data['y_pred'] - 1.96 * data['y_std'],
                 x=data['Dates'],
                 name='Predicted - 1.96 σ',
                 line=Line(color='Gray', width=0),
                 showlegend=False),
            dict(y=data['y_pred'] + 1.96 * data['y_std'],
                 x=data['Dates'],
                 name='Predicted + 1.96 σ',
                 fill='tonexty',
                 line=Line(color='Gray', width=0),
                 showlegend=False),
            dict(y=data['y'],
                 x=data['Dates'],
                 name='Actual',
                 mode='markers',
                 marker=Marker(color='Black', size=3, opacity=1),
                 color='Gray',
                 showlegend=False),
            dict(y=data['y_pred'],
                 x=data['Dates'],
                 name='Predicted',
                 line=Line(color='Blue', width=0.8),
                 showlegend=False,
                 opacity=0.5),
        ],
                   title=title,
                   dimensions=(700, 400),
                   vspan=dict(x0=datetime.datetime.strptime(
                       self.testing_cutoff, "%Y%m%d"),
                              x1=data['Dates'].max(),
                              color='Black',
                              width=0,
                              fill=False,
                              opacity=0.1))
Пример #7
0
    def get_single_propagation_scatter(self,
                                       color: Optional[str] = None) -> Scatter:
        time = defaultdict(int)

        for child in self.all_children:
            time[child.delay] += 1

        x = sorted(time.keys())
        y = []

        for delay in x:
            prev_sum = y[-1] if y else 0
            y.append(prev_sum + time[delay])

        return Scatter(x=x,
                       y=y,
                       marker=Marker(color=color) if color else None,
                       text=self.content)
Пример #8
0
def create_line_trace(net,
                      lines=None,
                      use_line_geodata=True,
                      respect_switches=False,
                      width=1.0,
                      color='grey',
                      infofunc=None,
                      trace_name='lines',
                      legendgroup=None,
                      cmap=None,
                      cbar_title=None,
                      show_colorbar=True,
                      cmap_vals=None,
                      cmin=None,
                      cmax=None,
                      cpos=1.1):
    """
    Creates a plotly trace of pandapower lines.

    INPUT:
        **net** (pandapowerNet) - The pandapower network

    OPTIONAL:
        **lines** (list, None) - The lines for which the collections are created.
        If None, all lines in the network are considered.

        **width** (int, 1) - line width

        **respect_switches** (bool, False) - flag for consideration of disconnected lines

        **infofunc** (pd.Series, None) - hoverinfo for line elements. Indices should correspond to
            the pandapower element indices

        **trace_name** (String, "lines") - name of the trace which will appear in the legend

        **color** (String, "grey") - color of lines in the trace

        **legendgroup** (String, None) - defines groups of layers that will be displayed in a legend
        e.g. groups according to voltage level (as used in `vlevel_plotly`)

        **cmap** (String, None) - name of a colormap which exists within plotly if set to True default `Jet`
        colormap is used, alternative colormaps : Greys, YlGnBu, Greens, YlOrRd,
        Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis

        **cmap_vals** (list, None) - values used for coloring using colormap

        **show_colorbar** (bool, False) - flag for showing or not corresponding colorbar

        **cbar_title** (String, None) - title for the colorbar

        **cmin** (float, None) - colorbar range minimum

        **cmax** (float, None) - colorbar range maximum

        **cpos** (float, 1.1) - position of the colorbar

        """

    color = get_plotly_color(color)

    # defining lines to be plot
    lines = net.line.index.tolist() if lines is None else list(lines)
    if len(lines) == 0:
        return []

    if infofunc is not None:
        if not isinstance(infofunc, pd.Series) and isinstance(infofunc, Iterable) and \
                len(infofunc) == len(lines):
            infofunc = pd.Series(index=lines, data=infofunc)
        if len(infofunc) != len(lines) and len(infofunc) != len(net.line):
            raise UserWarning(
                "Different amount of hover info than lines to plot")
        assert isinstance(infofunc, pd.Series), \
            "infofunc should be a pandas series with the net.line.index to the infofunc contents"

    no_go_lines = set()
    if respect_switches:
        no_go_lines = set(lines) & set(net.switch.element[
            (net.switch.et == "l") & (net.switch.closed == 0)])

    lines_to_plot = net.line.loc[set(net.line.index)
                                 & (set(lines) - no_go_lines)]
    no_go_lines_to_plot = None
    use_line_geodata = use_line_geodata if net.line_geodata.shape[
        0] > 0 else False

    if use_line_geodata:
        lines_to_plot = lines_to_plot.loc[set(lines_to_plot.index)
                                          & set(net.line_geodata.index)]
    else:
        lines_with_geodata = lines_to_plot.from_bus.isin(net.bus_geodata.index) & \
                             lines_to_plot.to_bus.isin(net.bus_geodata.index)
        lines_to_plot = lines_to_plot.loc[lines_with_geodata]

    cmap_lines = None
    if cmap is not None:
        # workaround: if colormap plot is used, each line need to be separate scatter object because
        # plotly still doesn't support appropriately colormap for line objects
        # TODO correct this when plotly solves existing github issue about Line colorbar

        cmap = 'jet' if cmap is True else cmap

        if cmap_vals is not None:
            if not isinstance(cmap_vals, np.ndarray):
                cmap_vals = np.asarray(cmap_vals)
        else:
            if net.res_line.shape[0] == 0:
                logger.error(
                    "There are no power flow results for lines which are default for line colormap coloring..."
                    "set cmap_vals input argument if you want colormap according to some specific values..."
                )
            cmap_vals = net.res_line.loc[lines_to_plot.index,
                                         'loading_percent'].values

        cmap_lines = get_plotly_cmap(cmap_vals,
                                     cmap_name=cmap,
                                     cmin=cmin,
                                     cmax=cmax)
        if len(cmap_lines) == len(net.line):
            # some lines are not plotted although cmap_value were provided for all lines
            line_idx_map = dict(
                zip(net.line.loc[lines].index.tolist(), range(len(lines))))
            cmap_lines = [
                cmap_lines[line_idx_map[idx]] for idx in lines_to_plot.index
            ]
        else:
            assert len(cmap_lines) == len(lines_to_plot), \
                "Different amounts of cmap values and lines to plot were supplied"

    line_traces = []
    for col_i, (idx, line) in enumerate(lines_to_plot.iterrows()):
        line_color = color
        line_info = line['name']
        if cmap is not None:
            try:
                line_color = cmap_lines[col_i]
                line_info = line['name'] if infofunc is None else infofunc.loc[
                    idx]
            except IndexError:
                logger.warning(
                    "No color and info for line {:d} (name: {}) available".
                    format(idx, line['name']))

        line_trace = dict(type='scatter',
                          text=[],
                          hoverinfo='text',
                          mode='lines',
                          name=trace_name,
                          line=Line(width=width, color=color))

        line_trace['x'], line_trace['y'] = _get_line_geodata_plotly(
            net, lines_to_plot.loc[idx:idx], use_line_geodata)

        line_trace['line']['color'] = line_color

        line_trace['text'] = line_info

        line_traces.append(line_trace)

    if show_colorbar and cmap is not None:

        cmin = cmap_vals.min() if cmin is None else cmin
        cmax = cmap_vals.max() if cmax is None else cmax
        try:
            # TODO for custom colormaps
            cbar_cmap_name = 'Jet' if cmap == 'jet' else cmap
            # workaround to get colorbar for lines (an unvisible node is added)
            # get x and y of first line.from_bus:
            x = [net.bus_geodata.x[net.line.from_bus[net.line.index[0]]]]
            y = [net.bus_geodata.y[net.line.from_bus[net.line.index[0]]]]
            lines_cbar = dict(type='scatter',
                              x=x,
                              y=y,
                              mode='markers',
                              marker=Marker(
                                  size=0,
                                  cmin=cmin,
                                  cmax=cmax,
                                  color='rgb(255,255,255)',
                                  opacity=0,
                                  colorscale=cbar_cmap_name,
                                  colorbar=ColorBar(thickness=10, x=cpos),
                              ))
            if cbar_title:
                lines_cbar['marker']['colorbar']['title'] = cbar_title

            lines_cbar['marker']['colorbar']['title']['side'] = 'right'

            line_traces.append(lines_cbar)
        except:
            pass

    if len(no_go_lines) > 0:
        no_go_lines_to_plot = net.line.loc[no_go_lines]
        for idx, line in no_go_lines_to_plot.iterrows():
            line_color = color
            line_trace = dict(type='scatter',
                              text=[],
                              hoverinfo='text',
                              mode='lines',
                              name='disconnected lines',
                              line=Line(width=width / 2,
                                        color='grey',
                                        dash='dot'))

            line_trace['x'], line_trace['y'] = _get_line_geodata_plotly(
                net, no_go_lines_to_plot.loc[idx:idx], use_line_geodata)

            line_trace['line']['color'] = line_color
            try:
                line_trace['text'] = infofunc.loc[idx]
            except (KeyError, IndexError, AttributeError):
                line_trace["text"] = line['name']

            line_traces.append(line_trace)

            if legendgroup:
                line_trace['legendgroup'] = legendgroup

    # sort infofunc so that it is the correct order lines_to_plot + no_go_lines_to_plot
    if infofunc is not None:
        if not isinstance(infofunc, pd.Series) and isinstance(infofunc, Iterable) and \
                len(infofunc) == len(net.line):
            infofunc = pd.Series(index=net.line.index, data=infofunc)
        assert isinstance(infofunc, pd.Series), \
            "infofunc should be a pandas series with the net.line.index to the infofunc contents"
        sorted_idx = lines_to_plot.index.tolist()
        if no_go_lines_to_plot is not None:
            sorted_idx += no_go_lines_to_plot.index.tolist()
        infofunc = infofunc.loc[sorted_idx]

    center_trace = create_edge_center_trace(line_traces,
                                            color=color,
                                            infofunc=infofunc,
                                            use_line_geodata=use_line_geodata)
    line_traces.append(center_trace)
    return line_traces
Пример #9
0
def create_bus_trace(net,
                     buses=None,
                     size=5,
                     patch_type="circle",
                     color="blue",
                     infofunc=None,
                     trace_name='buses',
                     legendgroup=None,
                     cmap=None,
                     cmap_vals=None,
                     cbar_title=None,
                     cmin=None,
                     cmax=None,
                     cpos=1.0,
                     colormap_column="vm_pu"):
    """
    Creates a plotly trace of pandapower buses.

    INPUT:
        **net** (pandapowerNet) - The pandapower network

    OPTIONAL:
        **buses** (list, None) - The buses for which the collections are created.
        If None, all buses in the network are considered.

        **size** (int, 5) - patch size

        **patch_type** (str, "circle") - patch type, can be

                - "circle" for a circle
                - "square" for a rectangle
                - "diamond" for a diamond
                - much more pathc types at https://plot.ly/python/reference/#scatter-marker

        **infofunc** (pd.Series, None) - hoverinfo for bus elements. Indices should correspond to
            the pandapower element indices

        **trace_name** (String, "buses") - name of the trace which will appear in the legend

        **color** (String, "blue") - color of buses in the trace

        **cmap** (String, None) - name of a colormap which exists within plotly
            (Greys, YlGnBu, Greens, YlOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow,
            Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis) alternatively a custom
            discrete colormap can be used

        **cmap_vals** (list, None) - values used for coloring using colormap

        **cbar_title** (String, None) - title for the colorbar

        **cmin** (float, None) - colorbar range minimum

        **cmax** (float, None) - colorbar range maximum

        **cpos** (float, 1.1) - position of the colorbar

        **colormap_column** (str, "vm_pu") - set color of bus according to this variable

    """
    color = get_plotly_color(color)

    bus_trace = dict(type='scatter',
                     text=[],
                     mode='markers',
                     hoverinfo='text',
                     name=trace_name,
                     marker=dict(color=color, size=size, symbol=patch_type))

    buses = net.bus.index.tolist() if buses is None else list(buses)
    bus_plot_index = [
        b for b in buses if b in list(set(buses) & set(net.bus_geodata.index))
    ]

    bus_trace['x'], bus_trace['y'] = (net.bus_geodata.loc[bus_plot_index,
                                                          'x'].tolist(),
                                      net.bus_geodata.loc[bus_plot_index,
                                                          'y'].tolist())

    if not isinstance(infofunc, pd.Series) and isinstance(infofunc, Iterable) and \
            len(infofunc) == len(buses):
        infofunc = pd.Series(index=buses, data=infofunc)

    bus_trace['text'] = net.bus.loc[bus_plot_index, 'name'] if infofunc is None else \
        infofunc.loc[buses]

    if legendgroup:
        bus_trace['legendgroup'] = legendgroup

    # if color map is set
    if cmap is not None:
        # TODO introduce discrete colormaps (see contour plots in plotly)
        # if cmap_vals are not given

        cmap = 'Jet' if cmap is True else cmap

        if cmap_vals is not None:
            cmap_vals = cmap_vals
        else:
            if net.res_line.shape[0] == 0:
                logger.error(
                    "There are no power flow results for buses voltage magnitudes which are default for bus "
                    "colormap coloring..."
                    "set cmap_vals input argument if you want colormap according to some specific values..."
                )
            cmap_vals = net.res_bus.loc[bus_plot_index, colormap_column].values

        cmap_vals = net.res_bus.loc[
            bus_plot_index,
            colormap_column] if cmap_vals is None else cmap_vals

        cmin = cmap_vals.min() if cmin is None else cmin
        cmax = cmap_vals.max() if cmax is None else cmax

        bus_trace['marker'] = Marker(size=size,
                                     color=cmap_vals,
                                     cmin=cmin,
                                     cmax=cmax,
                                     colorscale=cmap,
                                     colorbar=ColorBar(thickness=10, x=cpos),
                                     symbol=patch_type)

        if cbar_title:
            bus_trace['marker']['colorbar']['title'] = cbar_title

        bus_trace['marker']['colorbar']['title']['side'] = 'right'

    return [bus_trace]
Пример #10
0
def _create_branch_trace(net,
                         branches=None,
                         use_branch_geodata=True,
                         respect_separators=False,
                         width=1.0,
                         color='grey',
                         infofunc=None,
                         trace_name='lines',
                         legendgroup=None,
                         cmap=None,
                         cbar_title=None,
                         show_colorbar=True,
                         cmap_vals=None,
                         cmin=None,
                         cmax=None,
                         cpos=1.1,
                         branch_element='line',
                         separator_element='switch',
                         node_element='bus',
                         cmap_vals_category='loading_percent'):
    """
   Creates a plotly trace of branch elements. The rather generic, non-power net specific names
   were introduced to make it usable in other packages, e.g. for pipe networks.

   INPUT:
       **net** (pandapowerNet) - The  network

   OPTIONAL:
       **branches** (list, None) - The branches for which the collections are created.
                                   If None, all branches in the network are considered.

       **use_branch_geodata** (bool, True) - whether the geodata of the branch tables should be used

       **respect_separators** (bool, True) - whether separating elements like switches should be
                                             considered

       **width** (int, 1) - branch width

       **color** (String, "grey") - color of lines in the trace

       **infofunc** (pd.Series, None) - hoverinfo for line elements. Indices should correspond to
           the pandapower element indices

       **trace_name** (String, "lines") - name of the trace which will appear in the legend

       **legendgroup** (String, None) - defines groups of layers that will be displayed in a legend
       e.g. groups according to voltage level (as used in `vlevel_plotly`)

       **cmap** (String, None) - name of a colormap which exists within plotly if set to True default `Jet`
       colormap is used, alternative colormaps : Greys, YlGnBu, Greens, YlOrRd,
       Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis

       **cmap_vals** (list, None) - values used for coloring using colormap

       **show_colorbar** (bool, False) - flag for showing or not corresponding colorbar

       **cbar_title** (String, None) - title for the colorbar

       **cmin** (float, None) - colorbar range minimum

       **cmax** (float, None) - colorbar range maximum

       **cpos** (float, 1.1) - position of the colorbar

       **branch_element** (str, "line") - name of the branch element in the net. In a pandapower
                                          net, this is alwas "line"

       **separator_element** (str, "switch") - name of the separator element in the net. In a
                                               pandapower net, this is alwas "switch"

      **node_element** (str, "bus") - name of the node element in the net. In a pandapower net,
                                      this is alwas "bus" (net.bus)

       """

    color = get_plotly_color(color)

    # defining branches (lines) to be plot
    branches = net[branch_element].index.tolist(
    ) if branches is None else list(branches)
    if len(branches) == 0:
        return []

    if infofunc is not None:
        if not isinstance(infofunc, pd.Series) and isinstance(infofunc, Iterable) and \
                len(infofunc) == len(branches):
            infofunc = pd.Series(index=branches, data=infofunc)
        if len(infofunc) != len(branches) and len(infofunc) != len(
                net[branch_element]):
            raise UserWarning("Different amount of hover info than {}s to "
                              "plot".format(branch_element))
        assert isinstance(infofunc, pd.Series), \
            "infofunc should be a pandas series with the net.{}.index to the infofunc " \
            "contents".format(branch_element)
    no_go_branches = set()
    if respect_separators:
        if separator_element == "switch":
            no_go_branches = set(branches) & \
                             set(net[separator_element].element[(net[separator_element].et == "l") &
                                                             (net[separator_element].closed == 0)])
        elif separator_element == "valve":
            no_go_branches = set(branches) & \
                             set(net[separator_element][(~net[separator_element].in_service) |
                                                        (net[separator_element].opened)])
        else:
            raise NotImplementedError(
                "respect separtors is only implements for switches, "
                "not for {}s.".format(separator_element))
    branches_to_plot = net[branch_element].loc[set(net[branch_element].index)
                                               & (set(branches) -
                                                  no_go_branches)]
    no_go_branches_to_plot = None
    branch_geodata = branch_element + "_geodata"
    node_geodata = node_element + "_geodata"
    use_branch_geodata = use_branch_geodata if net[branch_geodata].shape[
        0] > 0 else False
    if use_branch_geodata:
        branches_to_plot = branches_to_plot.loc[
            set(branches_to_plot.index) & set(net[branch_geodata].index)]
    else:
        branches_with_geodata = branches_to_plot['from_'+node_element].isin(
                                                    net[node_geodata].index) & \
                                branches_to_plot['to_'+node_element].isin(net[node_geodata].index)
        branches_to_plot = branches_to_plot.loc[branches_with_geodata]
    cmap_branches = None
    if cmap is not None:
        # workaround: if colormap plot is used, each line need to be separate scatter object because
        # plotly still doesn't support appropriately colormap for line objects
        # TODO correct this when plotly solves existing github issue about Line colorbar

        cmap = 'jet' if cmap is True else cmap

        if cmap_vals is not None:
            if not isinstance(cmap_vals, np.ndarray):
                cmap_vals = np.asarray(cmap_vals)
        else:
            if net['res_' + branch_element].shape[0] == 0:
                logger.error(
                    "There are no simulation results for branches which are default for {}"
                    "colormap coloring..."
                    "set cmap_vals input argument if you want colormap according to some specific "
                    "values...".format(branch_element))
            cmap_vals = net['res_' +
                            branch_element].loc[branches_to_plot.index,
                                                cmap_vals_category].values

        cmap_branches = get_plotly_cmap(cmap_vals,
                                        cmap_name=cmap,
                                        cmin=cmin,
                                        cmax=cmax)
        if len(cmap_branches) == len(net[branch_element]):
            # some branches are not plotted although cmap_value were provided for all branches
            branch_idx_map = dict(
                zip(net[branch_element].loc[branches].index.tolist(),
                    range(len(branches))))
            cmap_branches = [
                cmap_branches[branch_idx_map[idx]]
                for idx in branches_to_plot.index
            ]
        else:
            assert len(cmap_branches) == len(branches_to_plot), \
                "Different amounts of cmap values and branches to plot were supplied"
    branch_traces = []
    for col_i, (idx, branch) in enumerate(branches_to_plot.iterrows()):
        line_color = color
        line_info = branch['name']
        if cmap is not None:
            try:
                line_color = cmap_branches[col_i]
                line_info = branch[
                    'name'] if infofunc is None else infofunc.loc[idx]
            except IndexError:
                logger.warning(
                    "No color and info for {} {:d} (name: {}) available".
                    format(branch_element, idx, branch['name']))

        line_trace = dict(type='scatter',
                          text=[],
                          hoverinfo='text',
                          mode='lines',
                          name=trace_name,
                          line=Line(width=width, color=color))

        line_trace['x'], line_trace['y'] = _get_branch_geodata_plotly(
            net, branches_to_plot.loc[idx:idx], use_branch_geodata,
            branch_element, node_element)

        line_trace['line']['color'] = line_color

        line_trace['text'] = line_info

        branch_traces.append(line_trace)
    if show_colorbar and cmap is not None:

        cmin = cmap_vals.min() if cmin is None else cmin
        cmax = cmap_vals.max() if cmax is None else cmax
        try:
            # TODO for custom colormaps
            cbar_cmap_name = 'Jet' if cmap == 'jet' else cmap
            # workaround to get colorbar for branches (an unvisible node is added)
            # get x and y of first line.from_bus:
            x = [
                net[node_geodata].x[net[branch_element]["from_" + node_element]
                                    [net[branch_element].index[0]]]
            ]
            y = [
                net[node_geodata].y[net[branch_element]["from_" + node_element]
                                    [net[branch_element].index[0]]]
            ]
            branches_cbar = dict(type='scatter',
                                 x=x,
                                 y=y,
                                 mode='markers',
                                 marker=Marker(
                                     size=0,
                                     cmin=cmin,
                                     cmax=cmax,
                                     color='rgb(255,255,255)',
                                     opacity=0,
                                     colorscale=cbar_cmap_name,
                                     colorbar=ColorBar(thickness=10, x=cpos),
                                 ))
            if cbar_title:
                branches_cbar['marker']['colorbar']['title'] = cbar_title

            branches_cbar['marker']['colorbar']['title']['side'] = 'right'

            branch_traces.append(branches_cbar)
        except:
            pass
    if len(no_go_branches) > 0:
        no_go_branches_to_plot = net[branch_element].loc[no_go_branches]
        for idx, branch in no_go_branches_to_plot.iterrows():
            line_color = color
            line_trace = dict(type='scatter',
                              text=[],
                              hoverinfo='text',
                              mode='lines',
                              name='disconnected branches',
                              line=Line(width=width / 2,
                                        color='grey',
                                        dash='dot'))

            line_trace['x'], line_trace['y'] = _get_branch_geodata_plotly(
                net, no_go_branches_to_plot.loc[idx:idx], use_branch_geodata,
                branch_element, node_element)

            line_trace['line']['color'] = line_color
            try:
                line_trace['text'] = infofunc.loc[idx]
            except (KeyError, IndexError, AttributeError):
                line_trace["text"] = branch['name']

            branch_traces.append(line_trace)

            if legendgroup:
                line_trace['legendgroup'] = legendgroup
    # sort infofunc so that it is the correct order lines_to_plot + no_go_lines_to_plot
    if infofunc is not None:
        if not isinstance(infofunc, pd.Series) and isinstance(infofunc, Iterable) and \
                len(infofunc) == len(net[branch_element]):
            infofunc = pd.Series(index=net[branch_element].index,
                                 data=infofunc)
        assert isinstance(infofunc, pd.Series), \
            "infofunc should be a pandas series with the net.{}.index to the infofunc contents" \
            .format(branch_element)
        sorted_idx = branches_to_plot.index.tolist()
        if no_go_branches_to_plot is not None:
            sorted_idx += no_go_branches_to_plot.index.tolist()
        infofunc = infofunc.loc[sorted_idx]
    center_trace = create_edge_center_trace(
        branch_traces,
        color=color,
        infofunc=infofunc,
        use_line_geodata=use_branch_geodata)
    branch_traces.append(center_trace)
    return branch_traces
Пример #11
0
def offline_plotly_scatter_bubble(
    df,
    x='x',
    y='y',
    size_col='size',
    text_col='text',
    category_col='category',
    possible_categories=None,
    filename=None,
    config={'displaylogo': False},
    xscale=None,
    yscale='log',
    layout={
        'hovermode': 'closest',
        'showlegend': False,
        'autosize': True
    },
    marker={'sizemode': 'area'},
    min_size=10,
):
    r"""Interactive scatterplot of a DataFrame with the size and color of circles linke to two columns

    config keys:
      fillFrame setBackground displaylogo sendData showLink linkText staticPlot scrollZoom plot3dPixelRatio displayModeBar
      showTips workspace doubleClick autosizable editable

    layout keys:
      angularaxis annotations autosize bargap bargroupgap barmode barnorm boxgap boxgroupgap boxmode calendar
      direction dragmode font geo height hiddenlabels hiddenlabelssrc hidesources hovermode images legend
      mapbox margin orientation paper_bgcolor plot_bgcolor radialaxis scene separators shapes showlegend sliders smith
      ternary title titlefont updatemenus width xaxis yaxis

    marker keys:
      autocolorscale blend border cauto cmax cmin color colorbar colors colorscale colorsrc colorssrc line maxdisplayed
      opacity opacitysrc outliercolor reversescale showscale size sizemax sizemin sizemode sizeref sizesrc symbol symbolsrc

    marker['sizeref'] gives the denominator of the circle scaling factor.
      Typically it should be about a tenth of the minimum 'size' column value

    >>> from nlpia.data.loaders import get_data
    >>> df = get_data('cities_us_wordvectors_pca2_meta').iloc[:100]
    >>> html = offline_plotly_scatter_bubble(
    ...     df.sort_values('population', ascending=False)[:350].copy().sort_values('population'),
    ...     x='x', y='y',
    ...     size_col='population', text_col='name', category_col='timezone',
    ...     xscale=None, yscale=None,  # 'log' or None
    ...     layout={}, marker={'sizeref': 3000})
    """
    config_default = dict(DEFAULT_PLOTLY_CONFIG)
    marker_default = {
        'size': size_col or min_size,
        'sizemode': 'area',
        'sizeref': int(df[size_col].min() * .8) if size_col else min_size
    }
    marker_default.update(marker)
    size_col = marker_default.pop('size')
    layout_default = {
        'xaxis': XAxis(title=x, type=xscale),
        'yaxis': YAxis(title=y, type=yscale),
    }
    layout_default.update(**layout)
    if config is not None:
        config_default.update(config)
    df.columns = clean_columns(df.columns)
    if possible_categories is None and category_col is not None:
        if category_col in df.columns:
            category_labels = df[category_col]
        else:
            category_labels = np.array(category_col)
        possible_categories = list(set(category_labels))
    possible_categories = [
        None
    ] if possible_categories is None else possible_categories
    if category_col and category_col in df:
        masks = [
            np.array(df[category_col] == label)
            for label in possible_categories
        ]
    else:
        masks = [np.array([True] * len(df))] * len(possible_categories)
    data = {
        'data': [
            Scatter(x=df[x][mask].values,
                    y=df[y][mask].values,
                    text=df[text_col][mask].values,
                    marker=Marker(size=df[size_col][mask]
                                  if size_col in df.columns else size_col,
                                  **marker_default),
                    mode='markers',
                    name=str(category_name))
            for (category_name, mask) in zip(possible_categories, masks)
        ],
        'layout':
        Layout(**layout_default)
    }
    return offline_plotly_data(data, filename=filename, config=config_default)
Пример #12
0
def make_graph(nodes: list, edges: list):
    """
    Creates plotly network graph.

    Parameters
    ----------
    nodes: list of nodes compatible with networx
    edges: list of edges compatible with networx

    Returns
    -------
    plotly.graph_objs.Figure
    """
    G = nx.Graph()

    # Create graph
    G.add_nodes_from(nodes)
    G.add_edges_from(edges)

    # Hack
    edge_labels_x = []
    edge_labels_y = []
    edge_labels_txt = []

    # Define appends for better performance
    add_x = edge_labels_x.append
    add_y = edge_labels_y.append
    add_txt = edge_labels_txt.append

    # Create edges plot
    edge_traces = []
    add = edge_traces.append
    for edge in G.edges(data=True):
        a, b, info = edge

        x0, y0 = G.node[a]['pos']
        x1, y1 = G.node[b]['pos']
        trace = go.Scatter(x=[x0, x1, None],
                           y=[y0, y1, None],
                           line=_color_edge(info),
                           hoverinfo='none',
                           mode='lines')
        add(trace)
        add_x((x0 + x1) / 2)
        add_y((y0 + y1) / 2)
        add_txt(f"time: {info['time'] }")

    # Hack for info hover on edges:
    middle_node_trace = go.Scatter(x=edge_labels_x,
                                   y=edge_labels_y,
                                   text=edge_labels_txt,
                                   mode='markers',
                                   hoverinfo='text',
                                   marker=Marker(opacity=0))

    node_trace = go.Scatter(x=[],
                            y=[],
                            text=[],
                            mode='markers',
                            hoverinfo='text',
                            marker=Marker(color=[],
                                          size=10,
                                          line=dict(width=2)))

    # Create nodes plot
    for node in G.nodes():
        the_node = G.node[node]
        x, y = the_node['pos']
        node_trace['x'] += tuple([x])
        node_trace['y'] += tuple([y])
        node_info = reduce(lambda a, b: f'{a} | {b}',
                           [f'{k} : {v}' for k, v in the_node.items()])
        node_trace['text'] += tuple([node_info])

    data = edge_traces + [node_trace, middle_node_trace]

    return go.Figure(data=data,
                     layout=go.Layout(
                         showlegend=False,
                         hovermode='closest',
                         margin=dict(b=20, l=5, r=5, t=40),
                         annotations=[
                             dict(text='',
                                  showarrow=False,
                                  xref="paper",
                                  yref="paper",
                                  x=0.005,
                                  y=-0.002)
                         ],
                         xaxis=dict(showgrid=False,
                                    zeroline=False,
                                    showticklabels=False),
                         yaxis=dict(showgrid=False,
                                    zeroline=False,
                                    showticklabels=False,
                                    scaleanchor="x",
                                    scaleratio=1),
                     ))