def generateAppPermissionsRequestedFrequencyHistogram(username, apiKey): permCountDict = extractAppPermData() permCount = [] permCountFreq = [] for permissionCount, permissionCountFreq in permCountDict.iteritems(): permCount.append(permissionCount) permCountFreq.append(permissionCountFreq) tls.set_credentials_file(username, apiKey) trace = Bar(x=permCount, y=permCountFreq, name='App frequency', marker=Marker(color='rgb(55, 83, 109)')) data = Data([trace]) layout = Layout(title='App Frequency vs Number of Permissions requested', xaxis=XAxis(title='Number of Permissions requested', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), yaxis=YAxis(title='App frequency', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), legend=Legend(x=0, y=1.0, bgcolor='rgba(255, 255, 255, 0)', bordercolor='rgba(255, 255, 255, 0)'), barmode='group', bargap=0.15, bargroupgap=0.1) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='app-perm') logging.debug('Check out the URL: ' + plot_url + ' for your plot')
def __init__(self): tls.set_credentials_file(stream_ids=["67ldjwqppe", "hyinh0zrb1", \ "t4tqyzk86o", "66qg05p8s9", "zbl5fi5amr"]) stream_ids = tls.get_credentials_file()['stream_ids'] streams = [] traces = [] for i in range(4): streams.append(Stream(token=stream_ids[i], maxpoints = 100)) traces.append(Scatter(x=[], y=[], mode='lines+markers', \ stream=streams[i])) layout = Layout(title='PeaceLily') data = Data(traces) fig = Figure(data=data, layout=layout) unique_uql = py.plot(fig, filename='PeaceLilly') self.active_streams = [] for i in range(4): self.active_streams.append(py.Stream(stream_ids[i])) self.active_streams[-1].open()
def generatePlotSilhouette(username, apiKey, clusterCountList, silhouetteAvgList, postfix): tls.set_credentials_file(username, apiKey) trace = Bar(x=clusterCountList, y=silhouetteAvgList, name='Silhouette Average Score', marker=Marker(color='rgb(0, 255, 0)')) data = Data([trace]) layout = Layout(title='Number of Clusters vs Silhouette Average Score', xaxis=XAxis(title='Number of Clusters', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), yaxis=YAxis(title='Silhouette Average Score', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), legend=Legend(x=0, y=1.0, bgcolor='rgba(255, 255, 255, 0)', bordercolor='rgba(255, 255, 255, 0)'), barmode='group', bargap=0.15, bargroupgap=0.1) fig = Figure(data=data, layout=layout) name = 'silhouette-average-score' if postfix != None: name += postfix plot_url = py.plot(fig, filename=name) logging.debug('Check out the URL: ' + plot_url + ' for your plot')
def scatterplot_1d(data, mask): tls.set_credentials_file(username=PLOTLY_USER, api_key=PLOTLY_AUTH) traces = [] #names = ['Vegetables', 'Fruits', 'Nuts, Seeds, and Legumes', 'Dairy', 'White Meat', 'Red Meat'] #names = ['Plant', 'Animal'] names = ['Low', 'Medium', 'High'] for n in range(max(mask) + 1): x = data[mask == n, 0] y = np.full((1, len(x)), n).flatten() trace = Scatter(x=x, y=y, mode='markers', name=names[n], marker=Marker(size=12, line=Line( color='rgba(217, 217, 217, 0.14)', width=0.5), opacity=0.5)) traces.append(trace) MyLayout = Layout(xaxis=layout.XAxis(showline=False), yaxis=layout.YAxis(showline=False)) return Figure(data=traces, layout=MyLayout)
def initialize_graph(): global stream_1 global s tls.set_credentials_file(username='******', api_key='9pjer55x5e', stream_ids=['efzmil96bw']) stream_id = tls.get_credentials_file()['stream_ids'][0] stream_1 = go.Stream( token=stream_id, # link stream id to 'token' key maxpoints=80 # keep a max of 80 pts on screen ) # pick up where we left off x_data = ab.get_column('time', 'prices', 'test_table.sqlite') y_data = ab.get_column('last', 'prices', 'test_table.sqlite') # some magic that makes the plot and uploads it to the plotly hosting site trace0 = go.Scatter(x=x_data, y=y_data, stream=stream_1) data = [trace0] layout = go.Layout(xaxis=dict(showticklabels=False)) fig = go.Figure(data=data, layout=layout) unique_url = py.plot(fig, filename='basic-line', auto_open=False) # open stream connection s = py.Stream(stream_id) s.open()
def account(): ''' If the user does not have a plotly credential file, this function creates one for them. Uses plotly syntax.''' user = input("What is your username: "******"Please enter the API key for your account: ") tools.set_credentials_file(username=user, api_key=API) print("Congrats. Your credentials file has been set.") mainprogram()
def init(username=None, api_key=None, notebook_mode=False): """Establishes connection to plot.ly with the correct credentials. Args: username: Defaults to None api_key: Defaults to None notebook_mode (bool): Defaults to False Raises: RuntimeError: If no credential is provided, either as arguments or as a viz.conf config file in the working directory. """ if username is None or api_key is None: if os.path.exists('vizz.conf'): print 'yay!' else: raise RuntimeError('') elif username is not None and api_key is not None: set_credentials_file(username=username, api_key=api_key) if notebook_mode: init_notebook_mode(connected=True) global layout layout = layout_def
def draw_hermite(n, a, b, nodes, *args): func_values = [values(func, n, a, b) for func in args] xvalues = values(lambda x: x, n, a, b) traceHermite = go.Scatter( x=xvalues, y=func_values[1], mode='markers', name='Hermite' ) traceFunc = go.Scatter( x=xvalues, y=func_values[0], mode='markers', name='Original function' ) xi, yi = zip(*nodes) traceCoordinates = go.Scatter( x=xi, y=yi, mode='markers', name='Nodes', marker=dict( size=15, color='rgba(0,0,0, 1)' ) ) data = [traceHermite, traceFunc, traceCoordinates] tls.set_credentials_file(username='******', api_key='e78ht2ggmf') py.plot(data, filename='plot' + str(len(nodes)))
def make_plot(): tls.set_credentials_file(stream_ids=[my_stream_id]) my_stream = Stream(token=my_stream_id, maxpoints=100) my_data = Data([Scatter(x=[], y=[], mode="lines+markers", stream=my_stream)]) my_layout = Layout(title="Time Series") my_fig = Figure(data=my_data, layout=my_layout) unique_url = py.plot(my_fig, filename="demo_smap_streaming")
def draw_func(n, a, b, plotly=False, sepplots=False, coordinates=None, *args): func_values = [values(func, n, a, b) for func in args] xvalues = values(lambda x: x, n, a, b) plt.figure(1) i = 211 j = 0 for vals in func_values: if sepplots: plt.subplot(i) i += 1 plt.plot(xvalues, vals, plot_types[j], linewidth=2.0) j += 1 plt.show() if not plotly: return traceNewton = go.Scatter( x=xvalues, y=func_values[0], mode='markers', name='Newton' ) traceLagrange = go.Scatter( x=xvalues, y=func_values[1], mode='markers', name='Lagrange' ) xi, yi = zip(*coordinates) traceCoordinates = go.Scatter( x=xi, y=yi, mode='markers', name='Nodes', marker=dict( size=15, color='rgba(0,0,0, 1)' ) ) if len(args) > 2: traceFunc = go.Scatter( x=xvalues, y=func_values[2], mode='markers', name='Original function' ) if len(args) > 2: data = [traceNewton, traceLagrange, traceFunc, traceCoordinates] else: data = [traceNewton, traceLagrange, traceCoordinates] tls.set_credentials_file(username='******', api_key='e78ht2ggmf') py.plot(data, filename='plot' + str(n))
def initPlot(stream_id1, stream_id2, graph_title, max_points=8000): print("Plotly Version=" + plotly.__version__) print("Setting plotly credentials...") tls.set_credentials_file(username=PLOTLY_USERNAME, api_key=PLOTLY_API_KEY) #stream_ids = tls.get_credentials_file()['stream_ids'] ## 1. SETUP STREAM_ID OBJECT # Make instance of stream id object stream_1 = go.Stream( token=stream_id1, # link stream id to 'token' key #maxpoints=max_points # keep a max of 80 pts on screen ) stream_2 = go.Stream( token=stream_id2, # link stream id to 'token' key #maxpoints=max_points # keep a max of 80 pts on screen ) # Initialize trace of streaming plot_init by embedding the unique stream_id trace1 = go.Scatter( x=[], y=[], name='高溫', mode='lines+markers+text', line=dict(shape='spline', color='rgb(255, 128, 0)'), stream=stream_1 # (!) embed stream id, 1 per trace ) trace2 = go.Scatter( x=[], y=[], name='低溫', mode='lines+markers+text', line=dict(shape='spline', color='rgb(102, 178, 255)'), stream=stream_2 # (!) embed stream id, 1 per trace ) data = go.Data([trace1, trace2]) # Add title to layout object layout = go.Layout(title=graph_title, xaxis=dict(title='日期 (年/月/日)', showgrid=False, showline=True, linewidth=2, tickwidth=2), yaxis=dict( title='溫度 (°C)', showgrid=True, showline=False, )) # Make a figure object fig = go.Figure(data=data, layout=layout) # Send fig to Plotly, initialize streaming plot_init, open new tab py.plot(fig, filename=graph_title)
def to_plotly(): import plotly.plotly as py py.sign_in('nehasprasad', 'aqesi8eh7r') import plotly.tools as tls tls.set_credentials_file(username='******', api_key='aqesi8eh7r') from plotly.graph_objs import * temperatures, humidities, timezone, from_date_str, to_date_str = get_records( ) # Create new record tables so that datetimes are adjusted back to the user browser's time zone. time_series_adjusted_tempreratures = [] time_series_adjusted_humidities = [] time_series_temprerature_values = [] time_series_humidity_values = [] for record in temperatures: local_timedate = arrow.get(record[0], "YYYY-MM-DD HH:mm").to(timezone) time_series_adjusted_tempreratures.append( local_timedate.format('YYYY-MM-DD HH:mm')) time_series_temprerature_values.append(round(record[2], 2)) for record in humidities: local_timedate = arrow.get(record[0], "YYYY-MM-DD HH:mm").to(timezone) time_series_adjusted_humidities.append( local_timedate.format( 'YYYY-MM-DD HH:mm')) #Best to pass datetime in text #so that Plotly respects it time_series_humidity_values.append(round(record[2], 2)) temp = Scatter(x=time_series_adjusted_tempreratures, y=time_series_temprerature_values, name='Temperature') hum = Scatter(x=time_series_adjusted_humidities, y=time_series_humidity_values, name='Humidity', yaxis='y2') data = Data([temp, hum]) layout = Layout(title="Temperature and Humidity in Clayton's Apartment", xaxis=XAxis(type='date', autorange=True), yaxis=YAxis(title='Fahrenheit', type='linear', autorange=True), yaxis2=YAxis(title='Percent', type='linear', autorange=True, overlaying='y', side='right')) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='lab_temp_hum') return plot_url
def main(): tools.set_credentials_file(username='******', api_key='eWEiOWPqQYFUrS0xiNmo') date = datetime.datetime.now() dates_timestamps, dates_list = get_timestamp_tuple(date) all_posts_counts = [] for timestamp in dates_timestamps: posts_data = get_posts(timestamp) current_count = posts_data['response']['total_count'] all_posts_counts.append(current_count) create_graph(all_posts_counts, dates_list)
def run(log_file_s=basestring, auto_open=None, plotly_login=None, api_key=None): if not tls.get_credentials_file(): print 'Please set your plotly login and api_key or give as additional arguments' if plotly_login and api_key: tls.set_credentials_file(plotly_login, api_key) logger.info('\nCredentials file is updated') draw_graph(log_file_s, auto_open=auto_open) logger.info('\nGraphs was drawn successfully\n')
def enable_plotly_in_cell(): import IPython from plotly.offline import init_notebook_mode from plotly import tools #Descomentar esta linea en colab display( IPython.core.display.HTML( '''<script src="/static/components/requirejs/require.js"></script>''' )) tools.set_credentials_file(username='******', api_key='euOGc1f62ScWry0fPG8D') init_notebook_mode(connected=True)
def plotly_heatmap(mi): """ Given a list with the MI scores for all possible pairs of residues in the protein(s) sequence(s) creates a plotly heatmap. """ (username, api_key)= parse_config(config_file, "plotly") tls.set_credentials_file(username=username, api_key=api_key) data = [ go.Heatmap( z=mi, x=[i for i in range(len(mi))], y= [i for i in range(len(mi))]) ] plot_url = py.plot(data, filename = 'mi_heatmap')
def test_credentials_tools(): original_creds = tls.get_credentials_file() expected = ['username', 'stream_ids', 'api_key'] assert all(x in original_creds for x in expected) # now, if that worked, we can try this! tls.reset_credentials_file() reset_creds = tls.get_credentials_file() tls.set_credentials_file(**original_creds) assert all(x in reset_creds for x in expected) creds = tls.get_credentials_file() assert all(x in creds for x in expected) assert original_creds == creds
def setup(): # Set plotly credentials pt.set_credentials_file(username='******', api_key=os.environ['API_KEY']) if os.path.isfile(csv_path): os.remove(csv_path) f = open(csv_path, 'a+') try: writer = csv.writer(f) writer.writerow(('Date', 'Stocks', 'Price($)')) finally: f.close()
def make_plot(logs, file_name): tls.set_credentials_file(username='******', api_key='wb1kstdv2f') x = [line['x'] for line in sorted(logs, key=lambda l: l['x'])] y = [line['y'] for line in sorted(logs, key=lambda l: l['x'])] trace = go.Scatter( x=x, y=y ) data = [trace] plot_url = py.plot(data, filename=file_name, share='public') logger.info('Please visit this url: %s', plot_url)
def __init__(self, testData=None, predictions=None, userData=None, allBusinessModels=None): tls.set_credentials_file(username='******', api_key='pic17ydt8e') self.allBusinessModels = allBusinessModels self.testData = testData self.predictions = predictions self.user = userData self._businessLatList = [] self._businessLonList = [] self._businessRatingList = [] self._businessTextList = [] self._predictionRatingList = [] self._predictionLonList = [] self._predictionLatList = [] self._predictionTextList = []
def generatePermissionsRequestedByAppFrequencyHistogram(username, apiKey): dbHandle = databaseHandler.dbConnectionCheck() #DB Open # crawlUrl(dbHandle, "https://raw.githubusercontent.com/android/platform_frameworks_base/master/core/res/AndroidManifest.xml") # sys.exit(1) cursor = dbHandle.cursor() sqlStatement = "SELECT * FROM `perm_app_count_view` LIMIT 25;" try: cursor.execute(sqlStatement) if cursor.rowcount > 0: queryOutput = cursor.fetchall() appCount = [] permName = [] for row in queryOutput: appCount.append(row[0]) permName.append(row[1]) except: logging.debug('Unexpected error:' + sys.exc_info()[0]) raise dbHandle.close() #DB Close tls.set_credentials_file(username, apiKey) tracePerm = Bar(x=permName, y=appCount, name='App frequency count', marker=Marker(color='rgb(55, 83, 100)')) data = Data([tracePerm]) layout = Layout(title='Permission vs App frequency count', xaxis=XAxis(title='Permission', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), yaxis=YAxis(title='App frequency', titlefont=Font(size=16, color='rgb(107, 107, 107)'), tickfont=Font(size=14, color='rgb(107, 107, 107)')), legend=Legend(x=0, y=1.0, bgcolor='rgba(255, 255, 255, 0)', bordercolor='rgba(255, 255, 255, 0)'), barmode='group', bargap=0.15, bargroupgap=0.1) fig = Figure(data=data, layout=layout) plot_url = py.plot(fig, filename='perm-app') logging.debug('Check out the URL: ' + plot_url + ' for your plot')
def graph_parsed_data(self, username, api_key): """ At this process the program will access the Plotly api and graph the features that/ were given by the first parsing process. The attributes that it will take in will be Api Username, ApiPassword or api_key :param username: this accesses is the api Username that you initially added in the first process. :param api_key: this is the api key that you receive after registration. :return: Final graph """ tls.set_credentials_file(username=username, api_key=api_key) data = [go.Scatter(x=self.df["jobs"], y=self.df["number of openings"])] # assign x as the dataframe column 'x' final_graph = py.plot(data, filename="pandas/basic-bar") return final_graph
def get_emp_graph(e_id): tls.set_credentials_file(username='******', api_key='OSTejAaNxLezI4RstNws') df = pd.DataFrame( list( AttendanceRecord.objects.filter( emp_id=e_id, ).values().order_by('date'))) df['in_time'] = df['in_time'].apply( lambda x: format(datetime.strptime(x, '%H:%M:%S'), '%H:%M:%S')) df['out_time'] = df['out_time'].apply( lambda x: format(datetime.strptime(x, '%H:%M:%S'), '%H:%M:%S')) df['date'] = df['date'].apply( lambda x: datetime.strptime(x, '%Y-%m-%d').date()) df['miti'] = df['miti'].apply( lambda x: datetime.strptime(x, '%Y/%m/%d').date()) print(df['in_time']) print(df['date']) trace1 = go.Scatter( x=df['date'], y=df['in_time'], name='In Time', mode='markers+lines', text=e_id, line=dict(color='#17BECF'), ) trace2 = go.Scatter( x=df['date'], y=df['out_time'], name='Out Time', mode='markers+lines', text=e_id, line=dict(color='#7F7F7F'), ) data = [trace1, trace2] layout = go.Layout(title="Time Analysis", showlegend=True, yaxis=dict(autorange=True)) fig = go.Figure(data=data, layout=layout) div = plt.plot(fig, filename='d3', auto_open=False) print(div) return div
def plot(scatterlistx, scatterlisty, t0, t1, xtitle, ytitle): # Sign in to plotly pt.set_credentials_file(username='******', api_key='7iqvws7lp3') # For hypotheses line minxhypotheses = min(scatterlistx) maxxhypotheses = max(scatterlistx) xl = [minxhypotheses, maxxhypotheses] yl = [generatehypopoints(t0, t1, minxhypotheses), generatehypopoints(t0, t1, maxxhypotheses)] tracescatter = go.Scatter( x=scatterlistx, y=scatterlisty, mode='markers', name='scatter' ) traceline = go.Scatter( x=xl, y=yl, mode='lines', name='gradientdescent' ) data = [tracescatter, traceline] layout = go.Layout( title=xtitle + " vs " + ytitle, xaxis=dict( title=xtitle, titlefont=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ), yaxis=dict( title=ytitle, titlefont=dict( family='Courier New, monospace', size=18, color='#7f7f7f' ) ) ) fig = go.Figure(data=data, layout=layout) url = py.plot(fig, filename=xtitle + ytitle) return url
def getPlotStation(pers, plotTitle, timezone): # import plotly.plotly as py # from plotly.graph_objs import * # import plotly.tools as pyTools pyTools.set_credentials_file(username='******', api_key='jLRlCzSOlSOKuUtvknqD') time_series_adjusted = [] time_series_values = [] for record in pers: local_timedate = arrow.get(record[0], "YYYY-MM-DD HH:mm").to(timezone) time_series_adjusted.append(local_timedate.format('YYYY-MM-DD HH:mm')) time_series_values.append(round(record[2], 2)) per = Scatter(x=time_series_adjusted, y=time_series_values, name=plotTitle) data = Data([per]) # change from Data([temp, hum]) --> Data([temp]) layout = Layout( title=plotTitle, xaxis=XAxis(type='date', autorange=True), yaxis=YAxis(title='Number of People', type='linear', autorange=True), ) fig = Figure(data=data, layout=layout) with Switch(plotTitle) as case: if case("Persian Station"): plot_url = py.plot(fig, filename='persian_station_C4C') print "Ploting Persian" if case("Asian Station"): plot_url = py.plot(fig, filename='asian_station_C4C') print "Ploting Asia" if case("Italian Station"): plot_url = py.plot(fig, filename='italian_station_C4C') print "Ploting Italian" if case("American Station"): plot_url = py.plot(fig, filename='american_station_C4C') print "Ploting American" if case("Latin Station"): plot_url = py.plot(fig, filename='latin_staion_C4C') print "Ploting Latin" print "Finishing ", plotTitle return [plot_url, per]
def graphing_salary(self, username, api_key): ''' :param username: str. This is the Plotly api username that you gave beforehand :param api_key: str. Plotly api_key :return: graphical output of the job selected. ''' # authorizing the user Plotly credentials tls.set_credentials_file(username=username, api_key=api_key) # creating a Plotly scatter object data = [ go.Scatter(x=self.df5['Quantity'], y=self.df5['Salary from jobs']) ] final_graph = py.plot(data, filename='pandas/basic-bar') return final_graph
def tsne_plotly(data, cat, labels, source, username, api_key, seed=0, max_points_per_category=250, max_label_length=64): print("Plotting data...") set_credentials_file(username=username, api_key=api_key) model = TSNE(n_components=3, random_state=seed, verbose=1) reduced = model.fit_transform(data) # subsample points before tsne / plotting if False: new_data = [] new_cats = [] for n in np.unique(cat): idx = np.where(cat == n)[0] idx = idx[:max_points_per_category] new_data.append(data[idx]) new_cats.append(np.reshape(cat[idx], [cat[idx].size, 1])) data = np.vstack(new_data) cat = np.vstack(new_cats) cat = np.reshape(cat, (cat.size,)) labels = np.asarray([lbl[:max_label_length] for lbl in labels]) plot_params = [ [reduced, source, labels[cat], 'topics-scatter.html'], [reduced, labels[cat], source, 'source-scatter.html']] # general figure layouts these are default values layout = go.Layout( margin=dict( l=0, r=0, b=0, t=0 ) ) # generating figures figures = [] for data, hover_text, cats, fname in plot_params: fig = gen_plotly_specs(datas=data, hover_text=hover_text, cat=cats) plotly.offline.plot({ "data": fig, "layout": layout }, filename=fname) figures.append([fig, fname])
def graph_parsed_data(self, username, api_key): ''' At this process the program will access the Plotly api and graph the features that/ were given by the first parsing process. The attributes that it will take in will be Api Username, ApiPassword or api_key :param username: this accesses is the api Username that you initially added in the first process. :param api_key: this is the api key that you receive after registration. :return: Final graph ''' tls.set_credentials_file(username=username, api_key=api_key) data = [ go.Scatter( x=self.df['jobs'], # assign x as the dataframe column 'x' y=self.df['number of openings']) ] final_graph = py.plot(data, filename='pandas/basic-bar') return final_graph
def choropl_viols(values, fips, leg='Violations by County'): """ Inputs: values: list of values to be mapped fips:list of fips codes for each county mapped leg: Title to be used in legend """ endpts = list(np.mgrid[min(values):max(values):6j]) colorscale = [ 'rgb(169,186,157)', 'rgb(208,240,192)', 'rgb(152,251,152)', 'rgb(80,220,100)', 'rgb(0,168,107)', 'rgb(79,121,66)', 'rgb(63,122,77)', 'rgb(46,139,87)', 'rgb(11,102,35)', 'rgb(0,78,56)' ] fig = ff.create_choropleth( fips=fips, values=values, scope=['North Carolina'], show_state_data=True, colorscale=colorscale, binning_endpoints=endpts, round_legend_values=True, plot_bgcolor='rgb(229,229,229)', paper_bgcolor='rgb(229,229,229)', legend_title=leg, #legend_title='Violations by County', county_outline={ 'color': 'rgb(255,255,255)', 'width': 0.5 }, #exponent_format=True, ) fig['layout']['legend'].update({'x': 0}) fig['layout']['annotations'][0].update({'x': -0.12, 'xanchor': 'left'}) ptools.set_credentials_file(api_key=secrets2.AppKey['Plotly'], username=secrets2.uzer_name['Plotly']) name3 = (leg.split(' ')[-1]) + 'LnkDNtstFri10am' py.plot(fig, filename=name3, auto_open=True) pio.write_image(fig, name3 + '.png') return
def __init__(self,choose_stream_id, filename, title): self.filename = filename self.title = title self.dataX = 0.0 self.dataY = 0.0 py.sign_in('tachagon', 'e3xdl3rnqe') stream_ids=["5oedue6mq7", "thg9gb1wwd", "p8x1frf0qx"] tls.set_credentials_file(stream_ids) # Get stream id from stream id list stream_id = stream_ids[choose_stream_id] # Make instance of stream id object stream = Stream( token=stream_id, # link stream id to 'token' key maxpoints=80 # keep a max of 80 pts on screen ) # Initialize trace of streaming plot by embedding the unique stream_id trace1 = Scatter( x=[], y=[], mode='lines+markers', stream=stream # embed stream id, 1 per trace ) data = Data([trace1]) # Add title to layout object layout = Layout(title=self.title) # Make a figure object fig = Figure(data=data, layout=layout) #(@) Send fig to Plotly, initialize streaming plot, open new tab unique_url = py.plot(fig, filename=self.filename) # (@) Make instance of the Stream link object, # with same stream id as Stream id object self.s = py.Stream(stream_id) #(@) Open the stream self.s.open()
def to_plotly(): # import plotly.plotly as py # from plotly.graph_objs import * # import plotly.tools as pyTools pyTools.set_credentials_file(username='******', api_key='jLRlCzSOlSOKuUtvknqD') Asian, American, Persian, Italian, Latin, timezone, from_date_str, to_date_str = get_records( ) #################### Start Persian plot ################## print "About to start getting into the functions" [plot_url, per] = getPlotStation(Persian, "Persian Station", timezone) [plot_url2, asi] = getPlotStation(Asian, "Asian Station", timezone) [plot_url3, ita] = getPlotStation(Italian, "Italian Station", timezone) [plot_url4, usa] = getPlotStation(American, "American Station", timezone) [plot_url5, lat] = getPlotStation(Latin, "Latin Station", timezone) plot_all = getAllPlot(per, asi, ita, usa, lat) return plot_all
def getAllPlot(per, asi, ita, usa, lat): # import plotly.plotly as py # from plotly.graph_objs import * # import plotly.tools as pyTools pyTools.set_credentials_file(username='******', api_key='jLRlCzSOlSOKuUtvknqD') data = Data([per, asi, ita, usa, lat]) layout = Layout( title="Count of people for all stations", xaxis=XAxis(type='date', autorange=True), yaxis=YAxis(title='Number of People', type='linear', autorange=True), ) fig = Figure(data=data, layout=layout) plot_all_url = py.plot(fig, filename='C4C_count') return plot_all_url
def make_plot(): time, pm25, pm10 = get_data_from_db() plotly_username = conf["plotly"]["username"] plotly_key = conf["plotly"]["api_key"] plotly_filename = conf["plotly"]["filename"] plot_pm25 = go.Scatter(x=time, y=pm25, name="pm2.5") plot_pm10 = go.Scatter(x=time, y=pm10, name="pm10") set_credentials_file(username=plotly_username, api_key=plotly_key) out = plot( { "data": [plot_pm25, plot_pm10], "layout": layout }, filename=plotly_filename, fileopt="overwrite", auto_open=False, sharing="public", ) return out
def write(timestamp, temperatures): if invalidConfig: if plotly_debugEnabled: plotly_logger.debug('Invalid config, aborting write') return [] debug_message = 'Writing to ' + plugin_name if not plotly_writeEnabled: debug_message += ' [SIMULATED]' plotly_logger.debug(debug_message) debug_text = '%s: ' % timestamp if plotly_writeEnabled: # Stream tokens from plotly tls.set_credentials_file(stream_ids=stream_ids_array) try: if plotly_writeEnabled: py.sign_in(plotly_username, plotly_api_key) for temperature in temperatures: debug_text += "%s (%s A" % (temperature.zone, temperature.actual) if temperature.target is not None: debug_text += ", %s T" % temperature.target debug_text += ') ' if plotly_writeEnabled: if temperature.zone in zones: stream_id = zones[temperature.zone] s = py.Stream(stream_id) s.open() ts = timestamp.strftime('%Y-%m-%d %H:%M:%S') s.write(dict(x=ts, y=temperature.actual)) s.close() else: plotly_logger.debug( "Zone %s does not have a stream id, ignoring") except Exception, e: plotly_logger.error("Plot.ly API error - aborting write\n%s", e)
def exercise09(): ''' Load historical Bitcoin prices that are in JSON format from https://api.coindesk.com/v1/bpi/historical/close.json using start date 9/1/2017 and end date 10/5/2018. Documentation on the API is here: https://www.coindesk.com/api/ Note: You may need to use the requests library and header spoofing to grab the data and then giving it to a DataFrame With the prices loaded into the DataFrame: - Drop the disclaimer column - Remove the bottom two rows - Plot a price timeseries and publish it to Plotly using the Plotly API and set the URL to the chart to the plotly_url variable. Publication to Plotly will occur programmtically via plotly API. You will need to import the library and create an API key from the plotly dashboard. - Print the head - Print the tail ''' header = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36' } # ------ Place code below here \/ \/ \/ ------ url = "https://api.coindesk.com/v1/bpi/historical/close.json?start=2017-09-01&end=2018-10-05" resp = requests.get(url=url, headers=header, verify=False) json = resp.json()['bpi'] df = pd.Series(json) df_new = pd.DataFrame(df).reset_index() df_new.columns = ['Date', 'Value'] data = [go.Scatter(x=df_new.Date, y=df_new['Value'])] tools.set_credentials_file(username=user_name, api_key=api_key) # py.iplot(data) plotly_url = py.plot(data, filename='basic-line', auto_open=True) print(plotly_url) df = df_new print(df.head()) print(df.tail()) # ------ Place code above here /\ /\ /\ ------ return df, plotly_url
def write(timestamp, temperatures): if invalidConfig: if plotly_debugEnabled: plotly_logger.debug('Invalid config, aborting write') return [] debug_message = 'Writing to ' + plugin_name if not plotly_writeEnabled: debug_message += ' [SIMULATED]' plotly_logger.debug(debug_message) debug_text = '%s: ' % timestamp if plotly_writeEnabled: # Stream tokens from plotly tls.set_credentials_file(stream_ids=stream_ids_array) try: if plotly_writeEnabled: py.sign_in(plotly_username, plotly_api_key) for temperature in temperatures: debug_text += "%s (%s A" % (temperature.zone, temperature.actual) if temperature.target is not None: debug_text += ", %s T" % temperature.target debug_text += ') ' if plotly_writeEnabled: if temperature.zone in zones: stream_id = zones[temperature.zone] s = py.Stream(stream_id) s.open() ts = timestamp.strftime('%Y-%m-%d %H:%M:%S') s.write(dict(x=ts, y=temperature.actual)) s.close() else: plotly_logger.debug("Zone %s does not have a stream id, ignoring") except Exception, e: plotly_logger.error("Plot.ly API error - aborting write\n%s", e)
def graphing_salary(self, username, api_key): ''' :param username: str. This is the Plotly api username that you gave beforehand :param api_key: str. Plotly api_key :return: graphical output of the job selected. ''' # authorizing the user Plotly credentials tls.set_credentials_file(username=username, api_key=api_key) # creating a Plotly scatter object data = [ go.Scatter( x=self.df5['Quantity'], y=self.df5['Salary from jobs'] ) ] final_graph = py.plot(data, filename='pandas/basic-bar') return final_graph
def scatterplot_2d(data, labels): tls.set_credentials_file(username=PLOTLY_USER, api_key=PLOTLY_AUTH) traces = [] names = list(set(labels)) for name in names: x = data[labels == name, 0] y = data[labels == name, 1] trace = Scatter(x=x, y=y, mode='markers', name=name, marker=Marker(size=12, line=Line( color='rgba(217, 217, 217, 0.14)', width=0.5), opacity=0.5)) traces.append(trace) MyLayout = Layout(xaxis=layout.XAxis(showline=False), yaxis=layout.YAxis(showline=False)) return Figure(data=traces, layout=MyLayout)
def __init__(self, plotly_user, plotly_api_key, plotly_stream_tokens): self.plotly_user = plotly_user self.plotly_api_key = plotly_api_key # Colors will be mapped to streams in order self.colors = [ 'rgb(195,56,37)', # Red (high) 'rgb(33,127,188)', # Blue (medium) 'rgb(26,175,93)', # Green (low) 'rgb(143,63,176)', # Purple 'rgb(246,158,0))', # Orange 'rgb(43,61,81)', # Navy Blue 'rgb(214,84,0)' ] # Pumpkin self.component_tag = 'component:' # Component prefix (will be stripped on graph legend) self.state_tag = 'state:' # State prefix (will be stripped on graph legend) self.priority_tag = 'priority:' # State prefix (will be stripped on graph legend) # Prepare stream ids tls.set_credentials_file(username=self.plotly_user, api_key=self.plotly_api_key, stream_ids=plotly_stream_tokens) self.stream_tokens = tls.get_credentials_file()['stream_ids']
"""Plots a csv file indicating the activity and duration of the activity. Will display bar graph on plotly.""" import csv import numpy as np import plotly.tools as tls import plotly.plotly as py from plotly.graph_objs import * import convert tls.set_credentials_file(username='******', api_key='....') def data_entry(): """Return a plotly bar graph of the csv activities file.""" x_axis = [] y_axis = [] # Read the csv file with the time values with open('workfile.txt', 'r') as csvfile: data_file = csv.reader(csvfile, delimiter='/') for row in data_file: x_axis.append(row[0]) y_axis.append(convert.convert_tuple(row[1], 'hour')) # Create the Plotly Graph data = Data([ Bar( x = x_axis, y = y_axis )
def plot_data(data_dict): ''' Plots the data on the Plotly Framework. ''' py.sign_in(plotly_username, plotly_api_key) tls.set_credentials_file(username=plotly_username, api_key=plotly_api_key) layout = Layout( showlegend=True, autosize=True, height=800, width=800, title="MAP", xaxis=XAxis( zerolinewidth=4, gridwidth=1, showgrid=True, zerolinecolor="#969696", gridcolor="#bdbdbd", linecolor="#636363", mirror=True, zeroline=False, showline=True, linewidth=6, type="linear", range=[0, data_dict["length"]], autorange=False, autotick=False, dtick=15, tickangle=-45, title="X co-ordinate" ), yaxis=YAxis( zerolinewidth=4, gridwidth=1, showgrid=True, zerolinecolor="#969696", gridcolor="#bdbdbd", linecolor="#636363", mirror=True, zeroline=False, showline=True, linewidth=6, type="linear", range=[data_dict["width"], 0], autorange=False, autotick=False, dtick=15, tickangle=-45, title="Y co-ordinate" ) ) mac_history_data = data_dict['data'] processed_data = [] for mac, p_data in mac_history_data.items(): if len(p_data): p_data = sorted(p_data, key=lambda x:x[0]) color = color_generator() plot_data = Scatter( x=[x[1] for x in p_data], y=[y[2] for y in p_data], mode='lines + text', text=list(range(1, len(p_data) + 1)), name=mac, marker=Marker(color=color), opacity="0.6", legendgroup = mac, ) processed_data.append(plot_data) startData = Scatter( x=[p_data[0][1]], y=[p_data[0][2]], mode='markers', marker=Marker(color=color, size="10", symbol = "triangle-left"), showlegend=False, text=["Start point " + mac], legendgroup=mac, ) processed_data.append(startData) endData = Scatter( x=[p_data[-1][1]], y=[p_data[-1][2]], mode='markers', marker=Marker(color=color, size="10"), showlegend=False, text=["End point " + mac], legendgroup=mac, ) processed_data.append(endData) data = Data(processed_data) fig = Figure(data=data, layout=layout) py.plot(fig, filename='Sample Code For History Of Clients ')
def accept(self): # In future we might be able to use more fine-grained exceptions # https://github.com/plotly/plotly.py/issues/524 self.set_status('Signing in and plotting...', color='blue') auth = {} if self.ui.radio_account_glue.isChecked(): auth['username'] = '******' auth['api_key'] = 't24aweai14' elif self.ui.radio_account_config.isChecked(): auth['username'] = '' auth['api_key'] = '' else: if self.username == "": self.set_status("Username not set", color='red') return elif self.api_key == "": self.set_status("API key not set", color='red') return else: auth['username'] = self.username auth['api_key'] = self.api_key from plotly import plotly from plotly.exceptions import PlotlyError from plotly.tools import set_credentials_file # Signing in - at the moment this will not check the credentials so we # can't catch any issues until later, but I've opened an issue for this: # https://github.com/plotly/plotly.py/issues/525 plotly.sign_in(auth['username'], auth['api_key']) if self.ui.radio_sharing_public.isChecked(): self.plotly_kwargs['sharing'] = 'public' elif self.ui.radio_sharing_secret.isChecked(): self.plotly_kwargs['sharing'] = 'secret' else: self.plotly_kwargs['sharing'] = 'private' # We need to fix URLs, so we can't let plotly open it yet # https://github.com/plotly/plotly.py/issues/526 self.plotly_kwargs['auto_open'] = False # Get title and legend preferences from the window self.plotly_args[0]['layout']['showlegend'] = self.legend self.plotly_args[0]['layout']['title'] = self.title try: plotly_url = plotly.plot(*self.plotly_args, **self.plotly_kwargs) except PlotlyError as exc: print("Plotly exception:") print('-' * 60) traceback.print_exc(file=sys.stdout) print('-' * 60) if "the supplied API key doesn't match our records" in exc.args[0]: username = auth['username'] or plotly.get_credentials()['username'] self.set_status("Authentication with username {0} failed".format(username), color='red') elif "filled its quota of private files" in exc.args[0]: self.set_status("Maximum number of private plots reached", color='red') else: self.set_status("An unexpected error occurred", color='red') return except: print("Plotly exception:") print('-' * 60) traceback.print_exc(file=sys.stdout) print('-' * 60) self.set_status("An unexpected error occurred", color='red') return self.set_status('Exporting succeeded', color='blue') if self.save_settings and self.ui.radio_account_manual.isChecked(): try: set_credentials_file(**auth) except Exception: print("Plotly exception:") print('-' * 60) traceback.print_exc(file=sys.stdout) print('-' * 60) self.set_status('Exporting succeeded (but saving login failed)', color='blue') # We need to fix URL # https://github.com/plotly/plotly.py/issues/526 if self.plotly_kwargs['sharing'] == 'secret': pos = plotly_url.find('?share_key') if pos >= 0: if plotly_url[pos - 1] != '/': plotly_url = plotly_url.replace('?share_key', '/?share_key') print("Plotly URL: {0}".format(plotly_url)) webbrowser.open_new_tab(plotly_url) super(QtPlotlyExporter, self).accept()
__author__ = 'Lothilius' from Helpdesk import Helpdesk from SFDC import SFDC import pandas as pd import datetime import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as tls import re tls.set_credentials_file(username='******', api_key='') pd.set_option('display.width', 160) def convert_time(unicode_series): """Given value for date time Convert it to a regular datetime string""" # for each in unicode_series: if len(unicode_series) == 10: pass elif len(unicode_series) == 13: unicode_series = unicode_series[:10] try: date_time_value = datetime.datetime.fromtimestamp(int(unicode_series)).strftime('%Y-%m-%d') if int(date_time_value[:4]) > 2009: return date_time_value else: return unicode_series except: return unicode_series
#initialize the Twilio API client = TwilioRestClient(account = 'ACdcfe2835ebc3cc5a64b326abe1d5f4d0', token = '0dfd8f8b7d00c2f282156422e7a625fd') #initialize inputs from RPi and circuit board GPIO.setmode(GPIO.BCM) GPIO.setup(04, GPIO.IN) #initialize credentials for Plotly API py.sign_in('atomicwest', 'e8q2zycckg') #embed streaming plot #tls.embed('streaming-demos','6') tls.set_credentials_file(username='******', api_key='e8q2zycckg') tls.set_credentials_file(stream_ids=["gc1co66vqa", "dddgcrbmrk", "l0arxz77g6", "uigxym0iqj", "1337subfep"]) stream_ids = tls.get_credentials_file()['stream_ids'] print stream_ids #acquire stream id from list stream_id = stream_ids[0] #make instance of stream id object stream = Stream( token = stream_id, maxpoints = 50 )
from plotly import plotly, tools import key import plotly.plotly as py from plotly.graph_objs import * import stdtable tools.set_credentials_file(username=key.username, api_key=key.apikey) def tutorial(): trace0 = Scatter( x=[1, 2, 3, 3], y=[10, 15, 13, 17], mode="markers" ) trace1 = Scatter( x=[1, 2, 3, 4], y=[16, 5, 11, 9], mode="markers" ) data = Data([trace0, trace1]) layout = Layout( xaxis = dict(title=""), yaxis = dict(title="") ) fig = Figure(data=data, layout=layout) py.plot(fig, filename=chartname) def interval_by_hour(timeslice_dict, chartname="interval_by_hour.html"):
#config Config = ConfigParser.ConfigParser() Config.read("config.ini") Username = Config.get('Plotly', 'Username') APIkey = Config.get('Plotly', 'APIkey') # Sign in py.sign_in(Username, APIkey) stream_ids_array = [] for name, value in Config.items('Rooms'): stream_ids_array.append(value) # Stream tokens from plotly tls.set_credentials_file(stream_ids=stream_ids_array) stream_ids = tls.get_credentials_file()['stream_ids'] # Set your login details in the 2 fields below USERNAME = Config.get('Evohome', 'Username') PASSWORD = Config.get('Evohome', 'Password') try: client = EvohomeClient(USERNAME, PASSWORD) except ValueError: try: client = EvohomeClient(USERNAME, PASSWORD) except ValueError: print "Error when connecting to internet, please try again" # We make a plot for every room
import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as tls tls.set_credentials_file(username='******', api_key='k0aql2lhru') class Chart(object): """A class that makes charts.""" def __init__(self, name, chart_type, data): self.name = name self.type = chart_type self.data = data def plot(self): print 'Plotting chart...' trace1 = go.Scatter( x=self.data[0], y=self.data[3], mode='markers' ) trace2 = go.Scatter( x=self.data[0], y=self.data[1], mode='markers' ) data = [trace1, trace2] if self.name == '': self.name = 'default_plot' plot_url = py.plot(data, filename=self.name)
def plotData(data_dict): ''' Plots the data on the Plotly Framework. ''' pData = data_dict['data'] pData = sorted(pData, key=lambda x:x[0]) processed_data = Scatter( x=[x[1] for x in pData], y=[y[2] for y in pData], mode='lines + text', text=list(range(1, len(pData) + 1)), name=mac, marker=Marker(color="red"), opacity="0.5", legendgroup = mac, ) startAndEndData = Scatter( x=[pData[0][1], pData[-1][1]], y=[pData[0][2], pData[-1][2]], mode='markers', marker=Marker(color="red", size="6"), showlegend=False, name = mac, text=["Start point", "End point"], legendgroup = mac, ) py.sign_in(plotly_username, plotly_api_key) tls.set_credentials_file(username=plotly_username, api_key=plotly_api_key) layout = Layout( showlegend=True, autosize=True, height=800, width=800, title="MAP", xaxis=XAxis( zerolinewidth=4, gridwidth=1, showgrid=True, zerolinecolor="#969696", gridcolor="#bdbdbd", linecolor="#636363", mirror=True, zeroline=False, showline=True, linewidth=6, type="linear", range=[0, data_dict["length"]], autorange=False, autotick=False, dtick=15, tickangle=-45, title="X co-ordinate" ), yaxis=YAxis( zerolinewidth=4, gridwidth=1, showgrid=True, zerolinecolor="#969696", gridcolor="#bdbdbd", linecolor="#636363", mirror=True, zeroline=False, showline=True, linewidth=6, type="linear", range=[data_dict["width"], 0], autorange=False, autotick=False, dtick=15, tickangle=-45, title="Y co-ordinate" ) ) data = Data([processed_data,startAndEndData]) fig = Figure(data=data, layout=layout) py.plot(fig, filename='Sample Code For History Of Clients ')
#Count number of ALL tweets per day i = 0 temp = date[0] for i in range(len(date)): if temp == date[i]: count = count + 1 i = i + 1 else: x.append(temp) yx.append(count) temp = date[i] count = 1 tls.set_credentials_file(stream_ids=[ "r510f777cl" ]) stream_ids = tls.get_credentials_file()['stream_ids'] # Get stream id from stream id list stream_id = stream_ids[0] # Make instance of stream id object stream = Stream( token=stream_id, # (!) link stream id to 'token' key maxpoints=80 # (!) keep a max of 80 pts on screen ) # Initialize trace of streaming plot by embedding the unique stream_id trace1 = Scatter(
start = c * interval + 1 conn = HTTPPasswordMgrWithDefaultRealm() conn.add_password(None, URL, username, password) handler = HTTPBasicAuthHandler(conn) opener = build_opener(handler) opener.addheaders = [('Accept', 'application/' + response_format)] install_opener(opener) page = urlopen(URL).read() page = page.decode('utf-8') data_dict = get_useful_data_from_json(page) mainDict["data"].extend(data_dict["data"]) if totalpages is None: totalpages = data_dict.get("totalPages") py.sign_in(plotly_username, plotly_api_key) tls.set_credentials_file(username=plotly_username, api_key=plotly_api_key) layout = Layout( showlegend=True, autosize=True, height=800, width=800, title="MAP", xaxis=XAxis( zerolinewidth=4, gridwidth=1, showgrid=True, zerolinecolor="#969696", gridcolor="#bdbdbd", linecolor="#636363", mirror=True, zeroline=False,
import plotly.plotly as py import plotly.graph_objs as go from plotly.graph_objs import * import numpy as np import plotly.tools as tls tls.set_credentials_file(username='******', api_key='mxg1wama31') a = np.load('results/r_50nr_0ns_0lambda_100.npy') data = [go.Surface(z=a)] layout = go.Layout( title='Shape from Shading', autosize=False, width=500, height=500, scene=Scene( xaxis=dict( autorange=False, range=[0, 50] # set axis range ), yaxis=dict( autorange=False, range=[0, 50] ), zaxis=dict( autorange=False, range=[0,50] ) ), margin=dict(
import plotly.plotly as py import plotly.tools as tls import plotly.graph_objs as go import pprint username = '******' api_key = '799l3tg6mq' tls.set_credentials_file(username=username, api_key=api_key) MONTH_LENGTHS = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # Returns a boolean denoting whether the given year is a leap year or not def isLeapYear(year): return year % 4 == 0 and not (year % 100 == 0 and year % 400 != 0) # Converts a slash-delimited date into a float def dateScore(date): if date.find('/') == -1: "Incorrect date format." exit(1) month, day, year = map(float, date.split('/')) monthBuffer = sum(MONTH_LENGTHS[x] for x in xrange(0, int(month) - 1)) monthBuffer += 1 if isLeapYear(year) and month == 2 else 0 return year + (monthBuffer + day) / 365.0 # Creates a graph to visualize the given celebrity's film scores def createGraph(data): traces = [] releaseDates = [] rtScores = []
AAAA.01.01 001 """ import os import pymodis import subprocess from osgeo import gdal import datetime import csv import numpy as np import plotly.tools as tls import plotly.plotly as py from plotly.graph_objs import * #####plotly credential################ tls.set_credentials_file(username="******",api_key="ct5xumzsfx") stream_token_series='ciwtg2uycs' stream_token_anomaly='y5r7tudz8g' ###################################### ########plotly setting################ trace_series = Scatter(x=[],y=[],stream=Stream(token=stream_token_series),yaxis='y',name='NDVI series') trace_anomaly = Scatter(x=[],y=[],stream=Stream(token=stream_token_anomaly),yaxis='y2',name='NDVI anomaly index') layout = Layout(title='NDVI MODIS Streaming data for Olea auropea in Umbria region (Italy)', yaxis=YAxis(title='NDVI index'), yaxis2=YAxis(title='Anomaly',side='right',overlaying="y" ) ) fig = Figure(data=[trace_series,trace_anomaly], layout=layout) print py.plot(fig, filename='NDVI MODIS Streaming data for Olea auropea') ########settings######################
import plotly.plotly as py # (*) Useful Python/Plotly tools import plotly.tools as tls # (*) Graph objects to piece together plots from plotly.graph_objs import * import numpy as np # (*) numpy for math functions and arrays import pandas as pd import matplotlib.pyplot as plt import datetime import time import sys tls.set_credentials_file(username="******", api_key="x4kt8y1smu") stream_ids = tls.get_credentials_file()['stream_ids'] stream_id1 = stream_ids[0] stream_id2 = stream_ids[1] stream_id3 = stream_ids[2] stream_id4 = stream_ids[3] stream_id5 = stream_ids[4] stream_id6 = stream_ids[5] stream_id7 = stream_ids[6] stream_id8 = stream_ids[7]
#packages to import import numpy as np import scipy.io as sio import plotly.plotly as py import plotly.graph_objs as go import plotly.tools as tls from frequencyFunction_specific import FrequencySpecific from category import category from PositionFunction_General import Position_general tls.set_credentials_file(username='******', api_key='9xknhmjhas') def CategoryTrainingFigure_Funnel(fileDirectory, filename, session): #Use when debugging or manually editing #filename = ('20160630_1430-MR1040_block6') #fileDirectory = '/Users/courtney/GoogleDrive/Riesenhuber/05_2015_scripts/Vibrotactile/01_CategoryTraining/data/1040/' #session = '2' #load matfile data = sio.loadmat(fileDirectory + filename, struct_as_record=True) #pull relevant data from structures reactionTime = data['trialOutput']['RT'] sResp = data['trialOutput']['sResp'] correctResponse = data['trialOutput']['correctResponse'] accuracy = data['trialOutput']['accuracy'] level = data['trialOutput']['level'] stimuli = data['trialOutput']['stimuli'] nTrials = data['exptdesign']['numTrialsPerSession'][0, 0][0] nBlocks = data['exptdesign']['numSessions'][0, 0][0] subjectName = data['exptdesign']['subName'][0, 0][0]
# This class creates the graphs # We used Flask to display the graph in HTML import dataAnalysis import plotly.plotly as py from plotly.graph_objs import * import plotly.tools as tls import numpy as np from flask import Flask, render_template, request from aParser import aParser from send_email import email import Dictionary import random from numpy import integer tls.set_credentials_file(username = '******', api_key = 'jqwnqq7qkh') app = Flask(__name__, static_url_path="/static") x = aParser() tempString = '56070b7de9a2530d0016bda3' x.setChild(tempString) x.getBalance() x.addBalanceToChildAcc(3000) for i in Dictionary.BestBuy_Array: x.spending(i.name, i.price, int (random.random() * 15)) for i in Dictionary.AmericanEagle_Array: x.spending(i.name, i.price, int (random.random() * 15)) for y in Dictionary.WholeFoods_Array: for i in Dictionary.WholeFoods_Array: x.spending(i.name, i.price, int (random.random() * 15))