def figure_deaths(count3): df2 = df.loc[(df['State/UnionTerritory'] == count3)] return px.area(df2, x="Date", y="Cured", color="State/UnionTerritory", line_group="State/UnionTerritory")
def figure_deaths(count3): # count3 = "World" df2 = df.loc[(df['location'] == count3)] return px.area(df2, x="date", y="total_deaths", color="location", line_group="location") # # @app.callback( # Output("cases_or_deaths_country","figure"), # [Input("countries","value"), Input("columns","value")] # ) # def density_fig(ch1, ch2): # df3 = df.loc[df["location"].isin(ch1)] # return px.area( # df3, x="date", y=ch2, color="location", line_group="location" # ) # # @app.callback( # Output("total_cases_or_deaths_country","figure"), # [Input("countries","value"), Input("columns","value")] # ) # def line_fig(ch1, ch2): # df3 = df.loc[df["location"].isin(ch1)] # return px.line( # df3, x="date", y=ch2, color="location", line_group="location" # )
def figure_case(count2): df2 = df.loc[(df['State/UnionTerritory'] == count2)] return px.area(df2, x="Date", y="Confirmed", color="State/UnionTerritory", line_group="State/UnionTerritory")
def figure_case(c2): # count2 = "World" df2 = df.loc[(df['location'] == c2)] return px.area(df2, x="date", y="total_cases", color="location", line_group="location")
def density_fig(ch1, ch2): df3 = df.loc[df["State/UnionTerritory"].isin(ch1)] return px.area(df3, x="Date", y=ch2, color="State/UnionTerritory", line_group="State/UnionTerritory")
if plot_type == "bar": fig = px.bar(dfp, x='Tahun', y=selected_columns, color=color_value, barmode=mode) st.plotly_chart(fig) elif plot_type == "line": fig = px.line(dfp, x='Tahun', y=selected_columns, color=color_value) st.plotly_chart(fig) elif plot_type == "area": fig = px.area(dfp, x='Tahun', y=selected_columns, color=color_value) elif plot_type == "hist": fig = px.histogram(dfp, x=selected_columns) st.plotly_chart(fig) elif plot_type == "box": fig = px.box(dfp, y=selected_columns, x=xbox) st.plotly_chart(fig) elif plot_type: cust_plot = dfp[selected_columns].plot(kind=plot_type) st.write(cust_plot) st.pyplot() if st.checkbox("Budget Allocation vs Index Change Analysis"): # df = pd.read_csv('belanja_apbd.csv',sep=";") df = pd.read_excel('belanja_apbd_full.xlsx')
), ), html.Div( dcc.Graph(figure=px.box( tmp, x="amount", y="Weekday", orientation="h", notched=True, category_orders={ "Weekday": [ "Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday" ] }))), html.Div( dcc.Graph(figure=px.area( tmp, x="Date", y="amount", color="Category"))) ], className="two column", style={ 'width': '100%', 'backgroundColor': 'blue' }, ), ] # hide/show modal @app.callback(Output("trans_modal", "style"), [Input("add-new-btn", "n_clicks")]) def display_trans_modal_callback(n): if n > 0:
df = px.data.gapminder() my_text = dcc.Markdown(""" ## Dash Boostrap Practice App This app is a quickstart to developing your own app - Use this Markdown component for your own text. You can learn more about how to format text such as adding **bold** and *italics* [here](https://commonmark.org/help/tutorial/) - Use the cards to create components and then add them to the layout. This figure is from the [Plotly Tutorial](https://plotly.com/python/plotly-express/) """) fig = px.area(df, x="year", y="pop", color="continent", line_group="country") text_card = html.Div( dbc.Card( dbc.CardBody( [ html.H4(" Card Title", className="card-title"), my_text, ], className="mt-4", ))) graph_card = html.Div( dbc.Card( dbc.CardBody( [
) st.write(pc) if st.checkbox("Show Principal Components", False): st.write(components) # PRINCIPAL COMPONENTS EXPLAINED VARIANCE pcafit = pca.fit(feature_set) expvar = pca.explained_variance_ratio_ st.subheader("") st.write("### Principal Components Explained Variance") exp = px.area( x = range(0, 35), y = expvar, template = 'plotly_dark', height = 700, labels = {"x": "Principal Components", "y": "Explained Variance"} ) st.write(exp) # 3-DIMENSIONAL PRINCIPAL COMPONENTS EXPLORATION pca3 = PCA(n_components=3) components3 = pca3.fit_transform(feature_set) totalvar = pca3.explained_variance_ratio_.sum() * 100 st.title("") st.subheader("Visualizing the Principal Components in 3 Dimensions") pc3 = px.scatter_3d(
def density_fig(ch1, ch2): df3 = df.loc[df["location"].isin(ch1)] return px.area( df3, x="date", y=ch2, color="location", line_group="location" )
def figure_deaths(count3): df2 = df.loc[(df['location'] == count3)] return px.area( df2, x="date", y="total_deaths", color="location", line_group="location" )
'dim1': 'year', 'dim2': 'ryr', 'dim3': 'trst', 'dim4': 'lstkw', 'dim5': 'level' }, inplace=True) years = cars['year'].unique() cars = cars.set_index(['ryr', 'trst', 'lstkw', 'year']) #cars = cars.unstack(level='year') cars_sum = cars.groupby(['trst', 'year']).sum().reset_index() fig = px.line(cars_sum, x="year", y="level", color="trst", log_y=True) fig2 = px.bar(cars_sum, x="year", y="level", color="trst") fig3 = px.area(cars_sum, x="year", y="level", color="trst") ## Macro economic indicators ## Aggregated results gdx_file = os.path.join(temp_dir, 'results.gdx') db = ws.add_database_from_gdx(gdx_file) results_agg = gdxt.get_parameter(db, 'results_agg') results_agg.rename(columns={ 'dim1': 'year', 'dim2': 'scenario', 'dim3': 'indicator', 'dim4': 'level' }, inplace=True) indicators = results_agg['indicator'].unique()
col2.plotly_chart(fig1, use_column_width=True) col1.subheader('') col1.subheader('') col1.subheader('') col1.subheader('') col1.subheader('') col1.subheader('') col1.subheader('Indicators') indicators = col1.selectbox('Choose Indicator',('Volume', 'RSI','MACD')) if indicators == 'Volume': fig2 = px.area(df, x = df.index, y = 'Volume',title=symbol) fig2.update_layout(xaxis_rangeslider_visible=True) col2.plotly_chart(fig2) if indicators == 'RSI': fig3 = go.Figure() fig3.add_trace(go.Scatter(x=RSI.index, y=RSI.values, mode='lines',line=dict(color='gray'), name = 'RSI')) fig3.update_layout(xaxis_rangeslider_visible=True) col2.plotly_chart(fig3,use_column_width=True) if indicators == 'MACD': fig4 = go.Figure() fig4.add_trace(go.Scatter(x=df.index, y=df['MACD'], mode='lines',line=dict(color='red'), name = 'MACD')) fig4.add_trace(go.Scatter(x=df.index, y=df['SIGNAL'], mode='lines',line=dict(color='blue'), name = 'SIGNAL LINE'))