Пример #1
0
 def plt_timeseries():
     T = Plot(
         idx, data,
         par_fpath)  # instantiate a plot object, idx = plot id, data = df
     T.timeseries(
         param, outpath
     )  # call timeseries method, param = parameters from main yaml, outpath = where to save output plot
Пример #2
0
def classifier(X_train, X_test, y_train, y_test):

    train_a, train_c, test_a, test_c, y_pred = training_classifier(
        X_train, X_test, y_train, y_test)
    f1_score = Plot.report(y_pred, y_test, FLAGS.report)
    if FLAGS.save_scores == True:
        Plot.saving_scores(FLAGS, test_a[-1], f1_score)
    return f1_score
Пример #3
0
 def post(self):
     Tup = self.request.get('Tup')
     Tleft = self.request.get('Tleft')
     Tdown = self.request.get('Tdown')
     Tright = self.request.get('Tright')
     plotType = self.request.get('plotType')
     Tuser = {'Tup':Tup, 'Tleft':Tleft, 'Tright':Tright, 'Tdown':Tdown}
     T = validTemp(**Tuser)
     #To avoid zero array passed to contourplot
     if type(T) == dict:
         flag = 0
         for value in T.values():
             if value != 0:
                 flag = 1
                 break
             if flag == 0:
                 T = ["error" + key for key in Tuser.keys()]
     if type(T) == list:
         for t in T:
             Tuser[t] = "Input invalid or beyond limits"
         plots = recentPlots()
         points=filter(None,(plot.geoPt for plot in plots))
         geolocationUrl=None
         if points:
             geolocationUrl=gmaps_img(points)
         self.renderPage("parameters.html", plots = plots,geolocationUrl = geolocationUrl, **Tuser)
     else:
         plot = plotcontour(T, plotType)
         user = users.get_current_user()
         if user:
             p = Plot(user = user, image = plot, **T)
             coords=get_coords(self.request.remote_addr)
             if coords:
                 p.geoPt = coords
             p.put()
             sleep(0.1)
             recentPlots(True)
         self.renderPage("result.html", plot = plot, **T)
def main():

    plotter = Plot()

    # Read in data
    stocks = pd.read_csv("SBUX_Stocks.csv")
    stocks = stocks.iloc[::-1]

    # Formatting into correct objects
    for col in [' Close/Last', ' Open', ' High', ' Low']:
        stocks[col] = stocks[col].apply(lambda x: float(x[2:]))
    stocks['Date'] = stocks['Date'].apply(lambda x: datetime.strftime(
        datetime.strptime(x, '%m/%d/%Y'), '%b %d %Y'))

    stocks = stocks.rename(
        columns={
            ' Close/Last': 'Close/Last',
            ' Open': 'Open',
            ' High': 'High',
            ' Low': 'Low'
        })

    plotter.basicPlot(stocks, 'Date', 'High')
clf = neighbors.KNeighborsClassifier(15)
clf.fit(X_train_res, y_train_res)


Z = clf.predict(X_train)
acc = clf.score(X_train, y_train)
print('Accuracy on split training data: ' + str(acc))

# Put the result into a confusion matrix
cnf_matrix_tra = confusion_matrix(y_train, Z)
print("Recall metric - split train data: {}%".format(100*cnf_matrix_tra[1,1]/(cnf_matrix_tra[1,0]+cnf_matrix_tra[1,1])))
plt.figure(1)
plt.title('Oversampling using SMOTE')
plt.subplot(221)
plot = Plot()
plot.plot_confusion_matrix(cnf_matrix_tra , classes=[0,1], title='Confusion matrix - train')


#now try knn on the test data
Z1 = clf.predict(X_test)
acc1 = clf.score(X_test, y_test)
print('Accuracy on split test data: ' + str(acc1))

# Put the result into a confusion matrix
cnf_matrix_test = confusion_matrix(y_test, Z1)
print("Recall metric - split test data: {}%".format(100*cnf_matrix_test[1,1]/(cnf_matrix_test[1,0]+cnf_matrix_test[1,1])))
#print("Precision metric in the testing dataset: {}%".format(100*cnf_matrix[0,0]/(cnf_matrix[0,0]+cnf_matrix[1,0])))
plt.subplot(222)
plot = Plot()
plot.plot_confusion_matrix(cnf_matrix_test , classes=[0,1], title='Confusion matrix - test')
Пример #6
0
from windows import Main
from punkts import Punkts
from updater import Updater
from version import Version
from datetime import timedelta
from create_output import Output

if __name__ == "__main__":

    config.IS_WINDOWS = True if platform.system() == 'Windows' else False

    root = tk.Tk()

    db = DB.DB()

    Version = Version.Versions()
    Updater = Updater.Updater(Version)

    Punkts = Punkts.Punkts(db)
    Plot = Plot.Plot(Punkts)
    Outputter = Output.Output(Punkts)

    app = Main.Main(root, Punkts, Version, Updater, Plot, Outputter)
    app.pack()
    root.title("Техпроцесс ")
    root.geometry("580x350+300+220")
    #root.resizable(False,False)

    root.minsize(580, 350)
    root.mainloop()
Пример #7
0
 def plt_histogram():
     H = Plot(idx, data, par_fpath)
     H.histogram(param, outpath)
Пример #8
0
 def plt_scatterplot():
     S = Plot(idx, data, par_fpath)
     S.scatterplot(param, outpath)
Пример #9
0
 def plt_boxplot():
     B = Plot(
         idx, df,
         par_fpath)  # for boxplot whole df passed, not the one with summary
     B.boxplot(param, outpath)
Пример #10
0
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output  # for callbacks

import preprocessing
from plots import Plot

df = preprocessing.process()
plot = Plot(df)

# Launch the application:
app = dash.Dash(__name__)

app.layout = html.Div(
    children=[
        # search and table
        html.Div(children=[
            dcc.Input(id="search_input",
                      placeholder='Enter a value...',
                      type='text',
                      value=''),
            html.Div(dcc.Graph(id="table")),
        ]),

        # row of 2 barcharts
        html.Div(children=[
            html.Div(children=[
                html.Div(dcc.Graph(id="overall_bc")),
                dcc.Slider(id="overall_slider",
                           marks={i: str(i)
Пример #11
0
email = '*****@*****.**'  # Valid email
period = ''  # Check README.md for valid inputs
interval = ''  # Check README.md for valid inputs
# <---------------Stuff You Need to Define----------------->

for o in portfolio:
    try:
        os.mkdir('image')
    except:
        pass
    try:
        os.mkdir(f'image/{o}')
    except:
        pass

for i in portfolio:
    try:
        start = perf_counter()

        Plot(i, period=period, interval=interval)
        print(DeciderBuy(i, period=period, interval=interval, receiver=email))
        print(DeciderSell(i, period=period, interval=interval, receiver=email))
        print(DeciderHold(i, period=period, interval=interval))

        end = perf_counter()

        print(f"\nThe analysis took: {end - start} seconds\n")
    except Exception as e:
        print(f'The analysis did not succeed due to: {e}')
        print('Check README.md for the usage of the program!')
Пример #12
0
from layer import Layer
from sklearn import datasets
from plots import Plot
from builder import LayerBuilder

iris = datasets.load_boston()

X = iris.data
Y = iris.target

l = Layer.new_from_file("testing")
p = Plot([l])
p.training_validation()

"""l = Layer.new(X, Y, num_nodes=50, num_iter=5000, epsilon=1.0,
                test_size=0.25, boostCV_size=0.15, nodeCV_size=0.18,
                minibatch=True, validation='Uniform')
l.save("testing")
Layer.save_multiple(l, "boston-set")"""
for a in range(10):
    print l.predict([X[a]]), Y[a]

#Layer.save_multiple(l, "boston-set")
exit()

l2 = Layer.new_multiple(3, X, Y, num_nodes=50, num_iter=1000, epsilon=1.0,
                test_size=0.25, boostCV_size=0.15, nodeCV_size=0.18,
                minibatch=True, validation='Uniform')

p = Plot(l, l2)
p.training_validation()