error_metric_f, ml_train_loss_f, ml_val_loss_f, ml_test_loss_f = \ ml_model_obj.evaluate(ml_x_t,train_y_t, ml_val_x_t, val_y_t, ml_test_x, test_y_t, scale = NN_scaling) title = 'metric learning' print_stat(title, error_metric, ml_train_loss, ml_val_loss, ml_test_loss) if fine_tuning: title = 'metric learning with fine tuning' print_stat(title, error_metric_f, ml_train_loss_f, ml_val_loss_f, ml_test_loss_f) # ============================================================================= from plotters import error_dist error_dist(ml_x_s, train_y_s, ml_x_t, train_y_t, error_metric, test_y_t, title=title) plt.show() from plotters import plot_cdf plot_cdf(error_metric, 100) plt.show() # del ml_model # del ml_model_obj
emb_val_x_s = embedder.fit_transform(val_x_s) emb_val_x_t = embedder.fit_transform(val_x_t) emb_test_x = embedder.fit_transform(test_x_t) # ============================================================================= num_inputs = emb_x_s.shape[1]# input layer size # ============================================================================= model_obj = my_models(num_inputs, dropout = dropout_pr) model = model_obj.build_model() model = model_obj.fit(emb_x_s, train_y_s, emb_val_x_s, val_y_s, scale = NN_scaling) model = model_obj.fit(emb_x_t, train_y_t, emb_val_x_t, val_y_t, scale = NN_scaling) error_fine_tuning, train_loss, val_loss, test_loss = \ model_obj.evaluate(emb_x_t,train_y_t, emb_val_x_t, val_y_t, emb_test_x, test_y_t, scale = NN_scaling) title = 'Naive learning + fine tuning' print_stat(title, error_fine_tuning, train_loss, val_loss, test_loss) # ============================================================================= from plotters import error_dist error_dist(emb_x_s, train_y_s, emb_x_t, train_y_t, error_fine_tuning, test_y_t, title = title) plt.show() from plotters import plot_cdf plot_cdf(error_fine_tuning, 100) plt.show()
error_metric_plus_sample_f, train_loss_f, val_loss_f, test_loss_f =\ w_model_obj.evaluate(emb_u_x_t, u_train_y_t, emb_u_val_x_t, u_val_y_t, emb_test_x, test_y_t, scale = NN_scaling) title = 'metric training plus sample selection bias' print_stat(title, error_metric_plus_sample, train_loss, val_loss, test_loss) if fine_tuning: title = 'metric training plus sample selection bias' print_stat(title, error_metric_plus_sample_f, train_loss_f, val_loss_f, test_loss_f) # ============================================================================= from plotters import error_dist error_dist(emb_x_s, train_y_s, emb_u_x_t, u_train_y_t, error_metric_plus_sample, test_y_t, weights=coef_s, title=title) plt.show() from plotters import plot_cdf plot_cdf(error_metric_plus_sample, 100) plt.show() # #del model #del w_model_obj
scale = NN_scaling, training_w = training_weights) error_metric_plus_sample_f, t_ssbc_train_loss_f, t_ssbc_val_loss_f, t_ssbc_test_loss_f =\ w_model_obj.evaluate(t_ssbc_x_t, train_y_t, t_ssbc_val_x_t, val_y_t, t_ssbc_test_x, test_y_t, scale = NN_scaling) title = 'no labeled data - transformed sample selection bias' print_stat(title, error_metric_plus_sample, t_ssbc_train_loss, t_ssbc_val_loss, t_ssbc_test_loss) if fine_tuning: title = 'no labeled data - transformed sample selection bias' print_stat(title, error_metric_plus_sample_f, t_ssbc_train_loss_f, t_ssbc_val_loss_f, t_ssbc_test_loss_f) # ============================================================================= from plotters import error_dist, plot_cdf, plot_embeding error_dist(t_ssbc_x_s, train_y_s, t_ssbc_x_t, train_y_t, error_metric_plus_sample, test_y_t, weights=coef_s, title = title) plt.show() # plot_embeding(train_x_s, train_x_t, coef_s, train_y_s = train_y_s, train_y_t = train_y_t, fig_name = 't-ssbc-ae') # plot_embeding(train_x_s, train_x_t, coef_s, fig_name = 't-ssbc-ae') plot_cdf(error_metric_plus_sample, 100) plt.show() print_stat(title, error_metric_plus_sample, t_ssbc_train_loss, t_ssbc_val_loss, t_ssbc_test_loss) del model del w_model_obj
error_naive, nl_train_loss, nl_val_loss, nl_test_loss = \ model_obj.evaluate(emb_x_t,train_y_t, emb_val_x_t, val_y_t, emb_test_x, test_y_t, scale = NN_scaling) if fine_tuning: model = model_obj.fit(emb_x_t, train_y_t, emb_val_x_t, val_y_t, scale = NN_scaling) error_naive_f, nl_train_loss_f, nl_val_loss_f, nl_test_loss_f = \ model_obj.evaluate(emb_x_t,train_y_t, emb_val_x_t, val_y_t, emb_test_x, test_y_t, scale = NN_scaling) title = 'Naive learning' print_stat(title, error_naive, nl_train_loss, nl_val_loss, nl_test_loss) if fine_tuning: title = 'Naive learning with fine-tuning' print_stat(title, error_naive_f, nl_train_loss_f, nl_val_loss_f, nl_test_loss_f) # ============================================================================= from plotters import error_dist error_dist(emb_x_s, train_y_s, emb_x_t, train_y_t, error_naive, test_y_t, title = title) plt.show() from plotters import plot_cdf plot_cdf(error_naive, 100) plt.show() del model del model_obj
model = w_model_obj.fit(emb_x_s, train_y_s, emb_val_x_s, val_y_s, val_w=training_val_weights, scale=NN_scaling, training_w=training_weights) error_sample_bias_xy, train_loss, val_loss, test_loss =\ w_model_obj.evaluate(emb_x_t, train_y_t, emb_val_x_t, val_y_t, emb_test_x, test_y_t, scale = NN_scaling) title = 'sample selection bias on X, Y' print_stat(title, error_sample_bias_xy, train_loss, val_loss, test_loss) # ============================================================================= from plotters import error_dist error_dist(emb_x_s, train_y_s, emb_x_t, train_y_t, error_sample_bias_xy, test_y_t, weights=coef_s, title=title) plt.show() from plotters import plot_cdf plot_cdf(error_sample_bias_xy, 100) plt.show()