def begin_interaction(type_, fnum): if ut.VERBOSE: print('\n<<<< BEGIN %s INTERACTION >>>>' % (str(type_).upper())) print('[inter] starting %s interaction, fnum=%r' % (type_, fnum)) fig = custom_figure.figure(fnum=fnum, docla=True, doclf=True) ax = custom_figure.gca() disconnect_callback(fig, 'button_press_event', axes=[ax]) return fig
def draw_feat_row( chip, fx, kp, sift, fnum, nRows, nCols=None, px=None, prevsift=None, origsift=None, aid=None, info="", type_=None, shape_labels=False, vecfield=False, multicolored_arms=False, draw_chip=False, draw_warped=True, draw_unwarped=True, draw_desc=True, rect=True, ori=True, pts=False, **kwargs ): """ draw_feat_row SeeAlso: ibeis.viz.viz_nearest_descriptors ~/code/ibeis/ibeis/viz/viz_nearest_descriptors.py CommandLine: # Use this to find the fx you want to visualize python -m plottool.interact_keypoints --test-ishow_keypoints --show --fname zebra.png # Use this to visualize the featrow python -m plottool.viz_featrow --test-draw_feat_row --show python -m plottool.viz_featrow --test-draw_feat_row --show --fname zebra.png --fx=121 --feat-all --no-sift python -m plottool.viz_featrow --test-draw_feat_row --dpath figures --save ~/latex/crall-candidacy-2015/figures/viz_featrow.jpg Example: >>> # DISABLE_DOCTEST >>> from plottool.viz_featrow import * # NOQA >>> import plottool as pt >>> # build test data >>> kpts, vecs, imgBGR = pt.viz_keypoints.testdata_kpts() >>> chip = imgBGR >>> print('There are %d features' % (len(vecs))) >>> fx = ut.get_argval('--fx', type_=int, default=0) >>> kp = kpts[fx] >>> sift = vecs[fx] >>> fnum = 1 >>> nRows = 1 >>> nCols = 2 >>> px = 0 >>> hack = ut.get_argflag('--feat-all') >>> sift = sift if not ut.get_argflag('--no-sift') else None >>> draw_desc = sift is not None >>> kw = dict( >>> prevsift=None, origsift=None, aid=None, info='', type_=None, >>> shape_labels=False, vecfield=False, multicolored_arms=True, >>> draw_chip=hack, draw_unwarped=hack, draw_warped=True, draw_desc=draw_desc >>> ) >>> # execute function >>> result = draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols, px, >>> rect=False, ori=False, pts=False, **kw) >>> # verify results >>> print(result) >>> pt.show_if_requested() """ import numpy as np import vtool as vt # should not need ncols here if nCols is not None: if ut.VERBOSE: print("Warning nCols is no longer needed") # assert nCols_ == nCols nCols = draw_chip + draw_unwarped + draw_warped + draw_desc pnum_ = df2.make_pnum_nextgen(nRows, nCols, start=px) # pnum_ = df2.get_pnum_func(nRows, nCols, base=1) # countgen = itertools.count(1) # pnumgen_ = df2.make_pnum_nextgen(nRows, nCols, base=1) def _draw_patch(**kwargs): return df2.draw_keypoint_patch( chip, kp, sift, rect=rect, ori=ori, pts=pts, ori_color=custom_constants.DEEP_PINK, multicolored_arms=multicolored_arms, **kwargs ) # Feature strings xy_str, shape_str, scale, ori_str = ph.kp_info(kp) if draw_chip: pnum = pnum_() df2.imshow(chip, fnum=fnum, pnum=pnum) kpts_kw = dict(ell_linewidth=5, ell_alpha=1.0) kpts_kw.update(kwargs) df2.draw_kpts2([kp], **kpts_kw) if draw_unwarped: # Draw the unwarped selected feature # ax = _draw_patch(fnum=fnum, pnum=pnum_(px + six.next(countgen))) # pnum = pnum_(px + six.next(countgen) pnum = pnum_() ax = _draw_patch(fnum=fnum, pnum=pnum) ph.set_plotdat(ax, "viztype", "unwarped") ph.set_plotdat(ax, "aid", aid) ph.set_plotdat(ax, "fx", fx) if shape_labels: unwarped_lbl = "affine feature invV =\n" + shape_str + "\n" + ori_str custom_figure.set_xlabel(unwarped_lbl, ax) if draw_warped: # Draw the warped selected feature # ax = _draw_patch(fnum=fnum, pnum=pnum_(px + six.next(countgen)), warped=True) pnum = pnum_() ax = _draw_patch(fnum=fnum, pnum=pnum, warped=True, **kwargs) ph.set_plotdat(ax, "viztype", "warped") ph.set_plotdat(ax, "aid", aid) ph.set_plotdat(ax, "fx", fx) if shape_labels: warped_lbl = ("warped feature\n" + "fx=%r scale=%.1f\n" + "%s") % (fx, scale, xy_str) else: warped_lbl = "" warped_lbl += info custom_figure.set_xlabel(warped_lbl, ax) if draw_desc: border_color = { "None": None, "query": None, "match": custom_constants.BLUE, "norm": custom_constants.ORANGE, }.get(str(type_).lower(), None) if border_color is not None: df2.draw_border(ax, color=border_color) # Draw the SIFT representation # pnum = pnum_(px + six.next(countgen)) pnum = pnum_() sift_as_vecfield = ph.SIFT_OR_VECFIELD or vecfield if sift_as_vecfield: custom_figure.figure(fnum=fnum, pnum=pnum) df2.draw_keypoint_gradient_orientations(chip, kp, sift=sift) else: if sift.dtype.type == np.uint8: sigtitle = "sift histogram" if (px % 3) == 0 else "" ax = df2.plot_sift_signature(sift, sigtitle, fnum=fnum, pnum=pnum) else: sigtitle = "descriptor vector" if (px % 3) == 0 else "" ax = df2.plot_descriptor_signature(sift, sigtitle, fnum=fnum, pnum=pnum) ax._hs_viztype = "histogram" # dist_list = ['L1', 'L2', 'hist_isect', 'emd'] # dist_list = ['L2', 'hist_isect'] # dist_list = ['L2'] # dist_list = ['bar_L2_sift', 'cos_sift'] # dist_list = ['L2_sift', 'bar_cos_sift'] dist_list = ["L2_sift"] dist_str_list = [] if origsift is not None: distmap_orig = vt.compute_distances(sift, origsift, dist_list) dist_str_list.append( "query_dist: " + ", ".join(["(%s, %s)" % (key, formatdist(val)) for key, val in six.iteritems(distmap_orig)]) ) if prevsift is not None: distmap_prev = vt.compute_distances(sift, prevsift, dist_list) dist_str_list.append( "prev_dist: " + ", ".join(["(%s, %s)" % (key, formatdist(val)) for key, val in six.iteritems(distmap_prev)]) ) dist_str = "\n".join(dist_str_list) custom_figure.set_xlabel(dist_str) return px + nCols
def draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols=None, px=None, prevsift=None, origsift=None, aid=None, info='', type_=None, shape_labels=False, vecfield=False, multicolored_arms=False, draw_chip=False, draw_warped=True, draw_unwarped=True, draw_desc=True, rect=True, ori=True, pts=False, **kwargs): """ draw_feat_row SeeAlso: ibeis.viz.viz_nearest_descriptors ~/code/ibeis/ibeis/viz/viz_nearest_descriptors.py CommandLine: # Use this to find the fx you want to visualize python -m plottool.interact_keypoints --test-ishow_keypoints --show --fname zebra.png # Use this to visualize the featrow python -m plottool.viz_featrow --test-draw_feat_row --show python -m plottool.viz_featrow --test-draw_feat_row --show --fname zebra.png --fx=121 --feat-all --no-sift python -m plottool.viz_featrow --test-draw_feat_row --dpath figures --save ~/latex/crall-candidacy-2015/figures/viz_featrow.jpg Example: >>> # DISABLE_DOCTEST >>> from plottool.viz_featrow import * # NOQA >>> import plottool as pt >>> # build test data >>> kpts, vecs, imgBGR = pt.viz_keypoints.testdata_kpts() >>> chip = imgBGR >>> print('There are %d features' % (len(vecs))) >>> fx = ut.get_argval('--fx', type_=int, default=0) >>> kp = kpts[fx] >>> sift = vecs[fx] >>> fnum = 1 >>> nRows = 1 >>> nCols = 2 >>> px = 0 >>> hack = ut.get_argflag('--feat-all') >>> sift = sift if not ut.get_argflag('--no-sift') else None >>> draw_desc = sift is not None >>> kw = dict( >>> prevsift=None, origsift=None, aid=None, info='', type_=None, >>> shape_labels=False, vecfield=False, multicolored_arms=True, >>> draw_chip=hack, draw_unwarped=hack, draw_warped=True, draw_desc=draw_desc >>> ) >>> # execute function >>> result = draw_feat_row(chip, fx, kp, sift, fnum, nRows, nCols, px, >>> rect=False, ori=False, pts=False, **kw) >>> # verify results >>> print(result) >>> pt.show_if_requested() """ import numpy as np import vtool as vt # should not need ncols here if nCols is not None: if ut.VERBOSE: print('Warning nCols is no longer needed') #assert nCols_ == nCols nCols = (draw_chip + draw_unwarped + draw_warped + draw_desc) pnum_ = df2.make_pnum_nextgen(nRows, nCols, start=px) #pnum_ = df2.get_pnum_func(nRows, nCols, base=1) #countgen = itertools.count(1) #pnumgen_ = df2.make_pnum_nextgen(nRows, nCols, base=1) def _draw_patch(**kwargs): return df2.draw_keypoint_patch(chip, kp, sift, rect=rect, ori=ori, pts=pts, ori_color=custom_constants.DEEP_PINK, multicolored_arms=multicolored_arms, **kwargs) # Feature strings xy_str, shape_str, scale, ori_str = ph.kp_info(kp) if draw_chip: pnum = pnum_() df2.imshow(chip, fnum=fnum, pnum=pnum) kpts_kw = dict(ell_linewidth=5, ell_alpha=1.0) kpts_kw.update(kwargs) df2.draw_kpts2([kp], **kpts_kw) if draw_unwarped: # Draw the unwarped selected feature #ax = _draw_patch(fnum=fnum, pnum=pnum_(px + six.next(countgen))) #pnum = pnum_(px + six.next(countgen) pnum = pnum_() ax = _draw_patch(fnum=fnum, pnum=pnum) ph.set_plotdat(ax, 'viztype', 'unwarped') ph.set_plotdat(ax, 'aid', aid) ph.set_plotdat(ax, 'fx', fx) if shape_labels: unwarped_lbl = 'affine feature invV =\n' + shape_str + '\n' + ori_str custom_figure.set_xlabel(unwarped_lbl, ax) if draw_warped: # Draw the warped selected feature #ax = _draw_patch(fnum=fnum, pnum=pnum_(px + six.next(countgen)), warped=True) pnum = pnum_() ax = _draw_patch(fnum=fnum, pnum=pnum, warped=True, **kwargs) ph.set_plotdat(ax, 'viztype', 'warped') ph.set_plotdat(ax, 'aid', aid) ph.set_plotdat(ax, 'fx', fx) if shape_labels: warped_lbl = ('warped feature\n' + 'fx=%r scale=%.1f\n' + '%s') % (fx, scale, xy_str) else: warped_lbl = '' warped_lbl += info custom_figure.set_xlabel(warped_lbl, ax) if draw_desc: border_color = { 'None': None, 'query': None, 'match': custom_constants.BLUE, 'norm': custom_constants.ORANGE }.get(str(type_).lower(), None) if border_color is not None: df2.draw_border(ax, color=border_color) # Draw the SIFT representation #pnum = pnum_(px + six.next(countgen)) pnum = pnum_() sift_as_vecfield = ph.SIFT_OR_VECFIELD or vecfield if sift_as_vecfield: custom_figure.figure(fnum=fnum, pnum=pnum) df2.draw_keypoint_gradient_orientations(chip, kp, sift=sift) else: if sift.dtype.type == np.uint8: sigtitle = 'sift histogram' if (px % 3) == 0 else '' ax = df2.plot_sift_signature(sift, sigtitle, fnum=fnum, pnum=pnum) else: sigtitle = 'descriptor vector' if (px % 3) == 0 else '' ax = df2.plot_descriptor_signature(sift, sigtitle, fnum=fnum, pnum=pnum) ax._hs_viztype = 'histogram' #dist_list = ['L1', 'L2', 'hist_isect', 'emd'] #dist_list = ['L2', 'hist_isect'] #dist_list = ['L2'] #dist_list = ['bar_L2_sift', 'cos_sift'] #dist_list = ['L2_sift', 'bar_cos_sift'] dist_list = ['L2_sift'] dist_str_list = [] if origsift is not None: distmap_orig = vt.compute_distances(sift, origsift, dist_list) dist_str_list.append('query_dist: ' + ', '.join([ '(%s, %s)' % (key, formatdist(val)) for key, val in six.iteritems(distmap_orig) ])) if prevsift is not None: distmap_prev = vt.compute_distances(sift, prevsift, dist_list) dist_str_list.append('prev_dist: ' + ', '.join([ '(%s, %s)' % (key, formatdist(val)) for key, val in six.iteritems(distmap_prev) ])) dist_str = '\n'.join(dist_str_list) custom_figure.set_xlabel(dist_str) return px + nCols