Пример #1
0
    def load_data(self, path, FileList=None, NameList=None):
        # nfiles = np.size(os.listdir(path))
        if FileList is None:
            infile = glob(path + '*.plt')
        else:
            infile = FileList

        if NameList is None:
            # ext_name = os.path.splitext(infile)
            df = p2p.ReadAllINCAResults(path, FileName=infile)
        elif NameList == 'h5':
            df = pd.read_hdf(infile)
        else:
            df = p2p.ReadINCAResults(path, VarList=NameList, FileName=infile)
        df = df.drop_duplicates(keep='last')
        grouped = df.groupby(['x', 'y', 'z'])
        df = grouped.mean().reset_index()
        self._data_field = df
Пример #2
0
    def load_3data(self, path, FileList=None, NameList=None):
        # nfiles = np.size(os.listdir(path))
        if FileList is None:
            infile = glob(path + '*.plt')
        else:
            infile = FileList

        if NameList is None:
            df = p2p.ReadAllINCAResults(path, FileName=infile, SpanAve=None)
        elif NameList == 'h5':
            if np.size(FileList) == 1:
                df = pd.read_hdf(infile)
            else:
                num = np.size(FileList)
                df = pd.concat([pd.read_hdf(FileList[i]) for i in range(num)])
                df.reset_index()
        else:
            df = p2p.ReadINCAResults(path,
                                     VarList=NameList,
                                     FileName=infile,
                                     SpanAve=False)

        # df = df.drop_duplicates(keep='last')
        self._data_field = df
Пример #3
0
    'v',
    'w',
    'p',
    'rho',
    'vorticity_1',
    'vorticity_2',
    'vorticity_3',
    'L2-criterion',
    'T',
]

start = time.time()

volume = [(-100.0, 80.0), (0.0, 40.0), (-8, 8)]
dxyz = [0.25, 0.125, 0.125]
df0, stime = p2p.ReadINCAResults(pathin, VarList, SubZone=volume)
xval = np.arange(volume[0][0], volume[0][1] + dxyz[0], dxyz[0])
yval = np.arange(volume[1][0], volume[1][1] + dxyz[1], dxyz[1])
zval = np.arange(volume[2][0], volume[2][1] + dxyz[2], dxyz[2])

df1 = df0[df0.x.isin(xval)]
df2 = df1[df1.y.isin(yval)]
df3 = df2[df2.z.isin(zval)]

stime = np.around(stime, decimals=2)
filename = "TP_data_" + str(stime)
df3.to_hdf(pathout + filename + ".h5", 'w', format='fixed')
# %% save to tecplot format
# in front of the step
df1 = df3.query("x<=0.0 & y>=0.0")
p2p.frame2tec3d(df1, pathout, filename + 'A', zname=1, stime=time)
Пример #4
0
# %%############################################################################
"""
    Streamwise wavenumber and growth rate by spanwise-averaged data
"""
# %% extract probe data along spanwise
VarList = [
    'x', 'y', 'z', 'u', 'v', 'w', 'p', 'vorticity_1', 'vorticity_2',
    'vorticity_3', 'Q-criterion', 'L2-criterion', '|grad(rho)|', 'T', '|gradp|'
]

path1 = path + "TP_data_01386484/"
equ = ['{|gradp|}=sqrt(ddx({p})**2+ddy({p})**2+ddz({p})**2)']
p2p.ReadINCAResults(path1,
                    VarList,
                    SavePath=path,
                    OutFile="SpanwiseFlow",
                    Equ=equ)
# %% extract probe data along spanwise
pathSW = path + 'Spanwise/'
x0 = np.arange(-40.0, 0.0 + 0.5, 0.5)
y0 = 0.001953125  # 0.00390625 #
fm = pd.read_hdf(pathSW + "SpanwiseFlow.h5")
for j in range(np.size(x0)):
    filenm = pathSW + 'spanwise_' + str(x0[j]) + '.dat'
    var = fm.loc[(fm['x'] == x0[j]) & (fm['y'] == y0), ['z', 'u', 'p']].values
    df = pd.DataFrame(data=var, columns=['z', 'u', 'p'])
    df.to_csv(filenm, sep=' ', index=False, float_format='%1.8e')

base = pd.read_csv(pathL + 'baseline_' + yloc + '.dat',
                   sep=' ',
Пример #5
0
    '{vx} = ddx({v})',
    '{vy} = ddy({v})',
    '{vz} = ddz({v})',
    '{wx} = ddx({w})',
    '{wy} = ddy({w})',
    '{wz} = ddz({w})',
    '{rhox} = ddx({rho})',
    '{rhoy} = ddy({rho})',
    '{rhoz} = ddz({rho})',
    '{px} = ddx({p})',
    '{py} = ddy({p})',
    '{pz} = ddz({p})',
]
FoldPath = "/media/weibo/VID2/BFS_M1.7TS1/bubble/"  # TS/Slice/TP_2D_S_10/"
OutFolder = "/media/weibo/VID2/BFS_M1.7TS1/"  # TS/Slice/TP_2D_S_10/"
subzone = [(-40.0, 30.0), (-3.0, 2.0)]
# subzone = [(-10.0, 30.0), (-3.0, 1.0)]
dirs = os.listdir(FoldPath)
for i in range(np.size(dirs)):
    # files = pd.read_csv(OutFolder + 'ZoomZone1.dat', header=None)[0]
    # infiles = [os.path.join(filedir, name) for name in files]
    filedir = FoldPath + dirs[i] + '/'
    outfile = 'TP_data'
    with timer("Read " + dirs[i]):
        DataFrame, time = \
        p2p.ReadINCAResults(filedir, VarList, SubZone=subzone, Equ=equ,
                            SavePath=OutFolder, OutFile=outfile)

# p2p.ReadINCAResults(FoldPath, VarList, FileName=FoldPath + 'TP_912.plt',
#                     Equ=equ, SavePath=OutFolder, OutFile='TP_912')
Пример #6
0
OutFolder3 = "/media/weibo/Data1/BFS_M1.7L_0505/Slice/5C/"
OutFolder4 = "/media/weibo/Data1/BFS_M1.7L_0505/Slice/5D/"
OutFolder5 = "/media/weibo/Data1/BFS_M1.7L_0505/Slice/5E/"
OutFolder6 = "/media/weibo/Data1/BFS_M1.7L_0505/Slice/5F/"
NoBlock = 606
# dirs1 = os.listdir(FoldPath)
subzone = [(-40.0, 70.0), (-3.0, 10.0)]
dirs = os.scandir(FoldPath)
for folder in dirs:
    # path = FoldPath+folder.name+"/"
    file = FoldPath + folder.name
    outfile = os.path.splitext(folder.name)[0]

    with timer("Read " + folder.name + " data"):
        DataFrame, time = \
        p2p.ReadINCAResults(FoldPath, VarList, FileName=file, SubZone=subzone,
                            SavePath=OutFolder, OutFile=outfile, Equ=equ)
        #DataFrame.to_hdf(OutFolder + "SolTime" + "%0.2f"%time + '.h5',
        #                 'w', format='fixed')
        #df1 = p2p.SaveSlice(DataFrame, time, 2.0, OutFolder1)
        #df2 = p2p.SaveSlice(DataFrame, time, 1.5, OutFolder1)
        #df3 = p2p.SaveSlice(DataFrame, time, 1.0, OutFolder1)
        #df4 = p2p.SaveSlice(DataFrame, time, 0.5, OutFolder1)
        #df5 = p2p.SaveSlice(DataFrame, time, 0.0, OutFolder1)
        #df6 = p2p.SaveSlice(DataFrame, time, -2.0, OutFolder1)

#DataFrame.to_csv(FoldPath + "MeanFlow.dat", sep="\t", index=False,
#                 header=VarList, float_format='%.10e')

# %% Extract Data for 3D DMD

VarList = ['x', 'y', 'z', 'u', 'v', 'w', 'p', '|gradp|']
Пример #7
0
VarList = [
    'x',
    'y',
    'z',
    'u',
    'v',
    'w',
    'p',
    'rho',
    'vorticity_1',
    'vorticity_2',
    'vorticity_3',
    'T',
]

df, time = p2p.ReadINCAResults(path1, VarList)
df.to_hdf(path2 + "TP_data_" + str(time) + ".h5", 'w', format='fixed')
# df = pd.read_hdf(path2 + "TP_data_901.h5")
df2 = df.groupby(['x', 'y']).transform(lambda x: (x - x.mean()))
df1 = pd.concat([df[['x', 'y']], df2], axis=1)
df1.to_hdf(path2 + 'ZFluctuation_' + str(time) + '.h5', 'w', format='fixed')

cube = [(-10.0, 20.0), (-3.0, 30.0), (-8, 8)]
df_zone = p2p.extract_zone(path1, cube, filename=path + "ZoneInfo1.dat")
p2p.save_tec_index(df, df_zone, filename=path + "ReadList1.dat")
# %% Save fluctuations flow as tecplot .dat
varname = [
    'u',
    'v',
    'w',
    'p',