Пример #1
0
def summarize_mpars_by_subject(df):
    return (
        df
        >> p.group_by("subject_id", "condition", "data_id", "headcase")
        >> p.summarize(
            x_mean="mean(x)",
            x_median="median(x)",
            x_std="std(x)",
            y_mean="mean(y)",
            y_median="median(y)",
            y_std="std(y)",
            z_mean="mean(z)",
            z_median="median(z)",
            z_std="std(z)",
            pitch_mean="mean(pitch)",
            pitch_median="median(pitch)",
            pitch_std="std(pitch)",
            roll_mean="mean(roll)",
            roll_median="median(roll)",
            roll_std="std(roll)",
            yaw_mean="mean(yaw)",
            yaw_median="median(yaw)",
            yaw_std="std(yaw)",
        )
        >> p.call(
            ".melt",
            id_vars=["subject_id", "data_id", "condition", "headcase"],
            value_vars=[
                "x_mean",
                "y_mean",
                "z_mean",
                "x_median",
                "y_median",
                "z_median",
                "x_std",
                "y_std",
                "z_std",
                "pitch_mean",
                "roll_mean",
                "yaw_mean",
                "pitch_median",
                "roll_median",
                "yaw_median",
                "pitch_std",
                "roll_std",
                "yaw_std",
            ],
            var_name="measure",
            value_name="val",
        )
        >> p.arrange("subject_id")
        >> p.call(".reset_index", drop=True)
    )
Пример #2
0
def summarize_fd_by_subject(df):

    return (
        df
        >> p.group_by("subject_id", "condition", "data_id", "headcase")
        >> p.summarize(
            fd_mean="mean(FramewiseDisplacement)",
            fd_median="median(FramewiseDisplacement)",
            fd_mean_filter="filter_mean(FramewiseDisplacement)",
            fd_median_filter="filter_median(FramewiseDisplacement)",
            perc_spikes="perc_high_motion(FramewiseDisplacement)",
        )
        >> p.do(
            lambda df: df.melt(
                id_vars=["subject_id", "data_id", "condition", "headcase"],
                value_vars=[
                    "fd_mean",
                    "fd_median",
                    "fd_mean_filter",
                    "fd_median_filter",
                    "perc_spikes",
                ],
                var_name="measure",
                value_name="val",
            )
        )
        >> p.arrange("subject_id")
        >> p.call(".reset_index", drop=True)
    )
Пример #3
0
def test_call():
    def remove_column_a(df):
        _df = df.copy()
        del _df['a']
        return _df

    df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, np.nan]})

    # External function
    result = df >> call(remove_column_a)
    assert 'a' not in result
    assert 'b' in result

    # dataframe method
    result = df >> call('.dropna')
    assert len(result) == 2

    # dataframe method with arguments
    result = df >> define(c='a*2') >> call('.dropna', axis=1)
    assert 'a' in result
    assert 'b' not in result
    assert 'c' in result
Пример #4
0
def combine_sherlock_view_runs_and_replace(df):
    """
    Given a summarized dataframe (i.e. 1 datapoint per subject per condition/motion-direction),
    average the summary params for runs view1 and view2 for sherlocks subs and reattach to 
    the original frame such that it only contains 'view' and 'recall' conditions rather than
    'view1', 'view2', and 'recall' conditions. This is because realignment is computed on a per
    run basis, of which sherlock subs have 2 'view' runs, but summary statistics (i.e. mean FD)
    are computed as: (mean of run1 + mean of run2 / 2)
    """

    sherlock_combined = (
        df
        >> p.query("data_id == 'sherlock' and condition != 'recall'")
        >> p.group_by("subject_id", "measure", "data_id", "headcase")
        >> p.summarize(val="mean(val)")
        >> p.call(".assign", condition="view")
        >> p.select("subject_id", "data_id", "condition", "headcase", "measure", "val")
    )
    df_no_sherlock = df.query("condition == 'view' or condition == 'recall'")
    return pd.concat([df_no_sherlock, sherlock_combined], axis=0).reset_index(drop=True)