Пример #1
0
def full_image_to_slice(path, slice):
    '''
    From a 3D image, save a slice corresponding to the index. Normalize the pixel image.
    Return the minimum size of the image.
    :param path:
    :param slice:
    :return:
    '''
    items = [f for f in listdir(path) if isfile(join(path, f))]
    min_size_x, min_size_y = [], []
    for name in items:
        new_name = name[:-7] + '.png'
        image = sitk.ReadImage(path + "/" + name)
        image_np = sitk.GetArrayFromImage(image)
        if (path == 'T1'):
            if image_np.shape[1] < slice:
                continue
            image_np = image_np[:, slice, :].astype(np.int16)
        else:
            if image_np.shape[0] < slice:
                continue
            image_float_and_flip = np.flip(image_np[slice, :, :].astype(
                np.float).T).copy()
            # rescale image to 0-255 range
            image_np = (image_float_and_flip / image_float_and_flip.max() *
                        255).astype(np.uint8)
        min_size_x.append(image_np.shape[0])
        min_size_y.append(image_np.shape[1])
        png.from_array(image_np, 'L').save(path + "_slices/" + new_name)
    return min_size_x, min_size_y
Пример #2
0
def convert_image(i, scene, img_depth, image, label):

    idx = int(i) + 1
    if idx in train_images:
        train_test = "training"
    else:
        #assert idx in test_images, "index %d neither found in training set nor in test set" % idx
        if idx not in test_images:
            print("leaving convert image early. index {} is processed".format(
                idx))
            return
        train_test = "testing"

    folder = "%s/%s/%s" % (out_folder, train_test, scene)
    if not os.path.exists(folder):
        os.makedirs(folder)

    img_depth = img_depth * 1000.0

    png.from_array(img_depth, 'L;16').save("%s/%05d_depth.png" % (folder, i))

    depth_visualization = visualize_depth_image(img_depth)

    # workaround for a bug in the png module
    depth_visualization = depth_visualization.copy()  # makes in contiguous
    shape = depth_visualization.shape
    depth_visualization.shape = (shape[0], np.prod(shape[1:]))

    depth_image = png.from_array(depth_visualization, "RGBA;8")
    depth_image.save("%s/%05d_depth_visualization.png" % (folder, i))

    imsave("%s/%05d_colors.png" % (folder, i), image)

    ground_truth = process_ground_truth(label)
    imsave("%s/%05d_ground_truth.png" % (folder, i), ground_truth)
def field_profile_and_save(x2_position, filename):
  Bx = np.ndarray( (xsize,ysize) , dtype=float)
  By = np.ndarray( (xsize,ysize) , dtype=float)

  # initialize
  for i in range(xsize):
    for j in range(ysize):
      Bx[i,j] = 0.0
      By[i,j] = 0.0

  points = points_in_sphere(3.5)
  for p in points:
    add_current(Bx,By,25+p[0],25+p[1],1.0/len(points))

  points = points_in_sphere(3.5)
  for p in points:
    add_current(Bx,By,x2_position+p[0],x2_position+p[1],-1.0/len(points))

  # color and write file
  a = np.ndarray((xsize,ysize,3), dtype=np.uint8)
  for i in range(xsize):
    for j in range(ysize):
      a[i,j] = field_to_log_color(1.0, -80, 255, math.sqrt(Bx[i,j]**2 + By[i,j]**2))
  f= open(filename, 'w+')
  png.from_array(a, mode='RGB').save(f)
  return f
Пример #4
0
def dump_region_to_png(pts, fname):
    ps = map(lambda p: p.to_pair(), pts)
    scale = 255 / float(len(ps) - 1)
    scales = 10
    maximalx = reduce(lambda o, p: max(o, p[0]), ps, 0) * scales
    maximaly = reduce(lambda o, p: max(o, p[1]), ps, 0) * scales
    minimalx = reduce(lambda o, p: min(o, p[0]), ps, maximalx) * scales
    minimaly = reduce(lambda o, p: min(o, p[1]), ps, maximaly) * scales
    img = [[(0, 0, 0) for x in range(int(maximalx + minimalx + 2))]
           for y in range(int(maximaly + minimaly + 2))]
    for i, (x, y) in enumerate(ps):
        #    print>>sys.stderr, i, x, y, len(img), int(y*scales+1)
        #print>>sys.stderr, 255-int(i*scale)
        img[int(y * scales)][int(x * scales)] = (max(0, 255 -
                                                     int(i * scale)), min(255, int(i * scale)), 0)
        img[int(y * scales + 1)][int(x * scales)] = (max(0, 255 -
                                                         int(i * scale)), min(255, int(i * scale)), 0)
        img[int(y * scales - 1)][int(x * scales)] = (max(0, 255 -
                                                         int(i * scale)), min(255, int(i * scale)), 0)
        img[int(y * scales)][int(x * scales + 1)] = (max(0, 255 -
                                                         int(i * scale)), min(255, int(i * scale)), 0)
        img[int(y * scales)][int(x * scales - 1)] = (max(0, 255 -
                                                         int(i * scale)), min(255, int(i * scale)), 0)

    ln = len(img)
    for y in range(len(img)):
        print>>sys.stderr, fname, y, 'of', ln, '   \r',
        sys.stdout.flush()
        img[y] = reduce(lambda o, p: o + list(p), img[y], [])
    # print
    png.from_array(img, 'RGB').save(fname)
Пример #5
0
def displaypgm(data, width):
    a = []
    w = int(width)
    for i in range(len(data)/w):
        row = [data[x + (i * w)] for x in range(w)]
        a.append(row)
    png.from_array(a, "L").save("out.png")
Пример #6
0
def convert_image(iffImageFile,outName):
    print iffImageFile
    img=MayaImage(iffImageFile)
    oGTruth, oDepth, oDepthVisualization = get_output_names(outName)

    dImage, dvImage = img.getDepthImages()
    rgbImage = img.getRGBImage()
    x1,x2,y1,y2 = autocrop(convert_to_PIL(rgbImage))
    
    oRgb = rgbImage
    oRgb = oRgb[x2:y2,:]
    oRgb = oRgb[:,x1:y1]
    oRgb = np.reshape(oRgb,(y2-x2,(y1-x1)*3))

    png.from_array(oRgb, 'RGB;8').save(oGTruth)

    
    oDvImage = dvImage
    oDvImage = np.reshape(oDvImage,(img.height(),img.width(),4))
    oDvImage = oDvImage[x2:y2,:]
    oDvImage = oDvImage[:,x1:y1]
    oDvImage = np.reshape(oDvImage,(y2-x2,(y1-x1)*4))
    #png.from_array(oDvImage, 'RGBA;8').save(oDepthVisualization)
    
    
    oDImage = np.reshape(dImage,(img.height(),img.width(),1))
    oDImage = oDImage[x2:y2,:]
    oDImage = oDImage[:,x1:y1]
    oDvImage = np.reshape(oDImage,(y2-x2,(y1-x1)))
    
    png.from_array(oDvImage, 'L;16').save(oDepth)
    #shutil.copy(oGTruth, oGTruth.replace("ground_truth","colors"))
    return iffImageFile
Пример #7
0
 def to_png(self, filename='qr-code.png', size=10, border=4):
     qr_code = np.pad(self.matrix, 4, mode='constant', constant_values=0)
     qr_code = np.repeat(np.repeat(qr_code, size, axis=0), size, axis=1)
     replace = {-1: 200, 1: 0, 0: 255}
     qr_code_list = [[replace[j] for j in i]
                     for i in np.swapaxes(qr_code, 0, 1)]
     png.from_array(qr_code_list, 'L').save(filename)
Пример #8
0
def draw_solution(solution: List[int], path: str) -> None:
    """
    Converts solution to eight queen problem into its png representation.

    Args:
        solution: List of integers. Each integer represents row in which queen is placed, and
            numbers position on a list represents column of a chessboard.
        path: place where png file will be saved.

    Returns:
        None
    """
    board = _create_board(
        field_px_size=FIELD_PX_SIZE,
        n_fields=SIZE,
        dark_color=GREY_COLOR,
        light_color=WHITE_COLOR,
    )

    queen = _read_queen_array()

    for row, col in enumerate(solution):
        board = _place_queen_on_board(row, col, board, queen, SIZE)

    # this will give image nice black border around it
    board = np.pad(board,
                   pad_width=3,
                   mode="constant",
                   constant_values=BLACK_COLOR)

    png.from_array(board, mode="L").save(path)
Пример #9
0
def update():
    global drawmod, cmlInit, last_render_time, frame

    # diffusion
    cml.iterate()
    # calculate various statistics used for control and influencing musical parameters
    stats.update(cml.matrix, cml.iter)
    # try some spin control

    # print 'spinTrans %d spinTrend %d lastSpinTrend %d alpha %.4f' % (stats.spinTrans, stats.spinTrend, lastSpinTrend, cml.a)
    # experiment with spin control - number of spin transitions > threshold, or else decrease alpha
    # if a is chaotic, it will search and find a more stable (but probably still chaotic) value reducing spin transitions
    print (cml.iter),
    if stats.spinTrend > 500:
        print "reducing alpha"
        cml.a = cml.a - 0.001
    if cml.iter > 1 and cml.iter % drawmod == 0:
        # calculating fps with goal of 30fps
        current_time = time.time()
        render_time = current_time - last_render_time
        last_render_time = current_time
        fps = round(1 / render_time)
        # try to get fps up to 30.
        drawmod = 1
        scaled = (cml.matrix + 1) * 64
        done = np.array(scaled).astype(short).tolist()
        # print(done)
        ## Display the data
        filename = "frame" + str(frame) + ".png"
        png.from_array(done, "L").save(filename)
        frame += 1
Пример #10
0
    def png(self):
        path = config.renders_directory + self.id + ".png"

        if os.path.isfile(path):
            return path

        os.makedirs(config.renders_directory)

        array = list()

        for i in range(0, self.width):
            array.append(list())

        for assignment in Assignment.objects(rendering=self):
            for y in range(assignment.y, assignment.y + assignment.height):
                for x in range(assignment.x, assignment.x + assignment.width):
                    for s in range(0, len(assignment.pixels)):
                        array[x][y] = [
                            assignment.pixels[4 * s + 0],
                            assignment.pixels[4 * s + 1],
                            assignment.pixels[4 * s + 2],
                            assignment.pixels[4 * s + 3]
                        ]

        png.from_array(array, 'RGBA').save(path)

        return path
Пример #11
0
def encode_to_image(filename):        
    filesize = os.path.getsize(filename)
    print "filename",filename,"filesize",filesize    
    width = int(math.sqrt(filesize)) # try to keep the image almost square
    f = open(filename,"rb")
    byte = f.read(1)
    pixelarray = []
    rowarray = []
    row,col = 0,0
    while byte != "":        
        byte = int(binascii.hexlify(byte), 16)            
        # convert each byte to pixels, using 3 bits for B and G, and 2 bits for R
        pixel = [(byte & 0b11000000) >> 6,(byte & 0b00111000) >> 3,(byte & 0b00000111)]
        rowarray.extend(pixel)        
        col += 1
        if (col == width):
            col = 0                        
            pixelarray.append(rowarray)
            rowarray=[]
        byte = f.read(1)
    while (col < width):
        # pad the rest of the last row with black
        rowarray.extend([0,0,0])
        col +=1
    pixelarray.append(rowarray)
    png.from_array(pixelarray,'RGB').save(filename[:-4]+".png")
    f.close()
Пример #12
0
    def writePngImages(self):

        #Loop through each texture
        for tex in self.texList:

            self.bs.seek_set(0)
            offset = self.bs.tell() % 4
            self.bs.seek_cur(offset)

            #Look for PVRT file header
            if not self.bs.find(PvmArchive.PVRT):
                #If not found, raise an error
                print("PVRT not found: 0x%x" % self.bs.tell())
                return 0

            #Length of pvr texture
            pvrLen = self.bs.readUInt()
            self.bs.setOffset()

            #Create PvrImage to convert bitmap
            print("Name: %s, Pos: 0x%x" % (tex['name'], self.bs.tell()))
            pvr = PvrTexture(self.bs, False, True)
            bitmap = pvr.getBitmap()
            imgName = "output/" + tex['name'] + '.png'
            png.from_array(bitmap, 'RGBA').save(imgName)

            #img = Image.open(imgName)
            #img = img.rotate(180)
            #img.save(imgName)

            print("")

        return 1
Пример #13
0
 def save_output(self, imgpath):
     '''Save label in segmented folder.
     '''
     label = np.uint16(self.label)
     directory = join(self.argdict['outputdir'], 'segmented')
     filename = basename(imgpath).split('.')[0] + '_{0}.png'.format(self.obj)
     png.from_array(label, 'L').save(join(directory, filename))
Пример #14
0
def StoreNoiseTextureLDR(Texture,OutputPNGFilePath,nRank=-1):
    """This function stores the given texture to a standard low-dynamic range png 
       file with four channels and 8 bits per channel.
      \param Texture An array of shape (Height,Width) or (Height,Width,nChannel). 
             The former is handled like (Height,Width,1). If nChannel>4 the 
             superfluous channels are ignored. If nChannel<4 the data is expanded. 
             The alpha channel is set to 255, green and blue are filled with black 
             or with duplicates of red if nChannel==1. It is assumed that each 
             channel contains every integer value from 0 to nRank-1 exactly once. 
             The range of values is remapped linearly to span the range from 0 to 
             255.
      \param OutputPNGFilePath The path to the output png file including the file 
             format extension.
      \param nRank Defaults to Width*Height if you pass a non-positive value."""
    # Scale the array to an LDR version
    if(nRank<=0):
        nRank=Texture.shape[0]*Texture.shape[1];
    Texture=np.asarray((Texture*256)//nRank,dtype=np.uint8);
    # Get a three-dimensional array
    if(len(Texture.shape)<3):
        Texture=Texture[:,:,np.newaxis];
    # Generate channels as needed
    if(Texture.shape[2]==1):
        Texture=np.dstack([Texture]*3+[255*np.ones_like(Texture[:,:,0])]);
    elif(Texture.shape[2]==2):
        Texture=np.dstack([Texture[:,:,0],Texture[:,:,1]]+[np.zeros_like(Texture[:,:,0])]+[255*np.ones_like(Texture[:,:,0])]);
    elif(Texture.shape[2]==3):
        Texture=np.dstack([Texture[:,:,0],Texture[:,:,1],Texture[:,:,2]]+[255*np.ones_like(Texture[:,:,0])]);
    elif(Texture.shape[2]>4):
        Texture=Texture[:,:,:4];
    # Save the image
    png.from_array(Texture,"RGBA;8").save(OutputPNGFilePath);
Пример #15
0
def generate_dhm_splat_tile(x: int, y: int, zoom: int):

    # load associated tile entry from db
    tile = get_or_initialize_tile(x, y, zoom)

    # load or generate dhm information
    np_dhm = tile.heightmap
    if not np_dhm:
        # generate tile in db
        np_dhm = generate_dhm_db(x, y, zoom)

    # create empty image
    np_image = np.zeros((TILE_SIZE_PIXEL, TILE_SIZE_PIXEL, 4), dtype=np.uint16)

    # add heightmap to the image
    # we expect values in centimeters as unsigned integer with values from 0-8500000
    # which requires 20bit to store. In the 16-bit per channel image this requires
    # 1,5 channels so we store it in RRGgbbaa
    pass  # FIXME: maybe it is currently sufficiant to use two complete channels (RRGG)

    # Heightmap: RRGgbbaa
    # Vegetation Splatmap: rrgGBbaa

    # write the file including the alpha mask
    output_file = DHM_SPLAT_FILE.format(DHM_SPLAT_IDENTIFIER, zoom, y, x)
    png.from_array(np_image, 'RGBA').save(output_file)
Пример #16
0
def convert_image(i, scene, img_depth, image, label):

    idx = int(i) + 1
    if idx in train_images:
        train_test = "training"
    else:
        assert idx in test_images, "index %d neither found in training set nor in test set" % idx
        train_test = "testing"

    folder = "%s/%s/%s" % (out_folder, train_test, scene)
    if not os.path.exists(folder):
        os.makedirs(folder)

    img_depth *= 1000.0

    png.from_array(img_depth, 'L;16').save("%s/%05d_depth.png" % (folder, i))

    depth_visualization = visualize_depth_image(img_depth)

    # workaround for a bug in the png module
    depth_visualization = depth_visualization.copy()  # makes in contiguous
    shape = depth_visualization.shape
    depth_visualization.shape = (shape[0], np.prod(shape[1:]))

    depth_image = png.from_array(depth_visualization, "RGBA;8")
    depth_image.save("%s/%05d_depth_visualization.png" % (folder, i))

    imsave("%s/%05d_colors.png" % (folder, i), image)

    ground_truth = process_ground_truth(label)
    imsave("%s/%05d_ground_truth.png" % (folder, i), ground_truth)
Пример #17
0
 def testfromarrayWrong(self):
     """Test incorrect mode handling"""
     try:
         png.from_array([[1]], 'gray')
     except png.Error:
         return
     assert 0, "Expected from_array() to raise png.Error exception"
Пример #18
0
def main():
    if len(sys.argv) < 3:
        print("Usage: python visualize.py [in_file] [out_file]")
        sys.exit(-1)

    inFile = sys.argv[1]
    outFile = sys.argv[2]

    with open(inFile, mode='rb') as file: # import file to read as a binary
        byte_file = file.read()

    pixel_values = make_pixel_array(byte_file)
    image_size = int(len(pixel_values) ** 0.5)
    # splits values into arrays of equal size to make the rows/columns of the image
    pixel_array=[pixel_values[x:x+image_size] for x in range(0, len(pixel_values), image_size)]

    # truncates pixel info to ensure a square image
    if len(pixel_array[-1]) != image_size:
        pixel_array = pixel_array[:-1]

    if (outFile[-4:]) != ".png":
        outFile += ".png"
    
    #print(pixel_array) #if you want to see individual pixel values, uncomment
    # creating the pixel array makes saving the image easy, PIL-like
    png.from_array(pixel_array, 'RGB').save(str(outFile))
def parabolaGen(h,
                l,
                open_paint=False,
                file_name="parabola_fine_vertical",
                ceil=math.ceil):
    if _inputParser_(h, l):
        t = time()
        h = abs(int(h))
        l = abs(int(l))
        a = -4 * h / (l * l)
        #Records the heights of the parabola at a certain position on the x-axis
        y = [a * (i + 0.5) * (i + 0.5 - l) for i in range(l)]

        p = [[] for i in range(h)]
        for row in range(h):
            dThreshold = h - 1 - row
            for pix in range(ceil(l / 2)):
                pixVal = 0
                if y[pix] > dThreshold:
                    pixVal = y[pix] - dThreshold
                    if pixVal > 1:
                        pixVal = 1
                p[row].append(ceil(pixVal * 255))

        for row in range(h):
            for pix in range(int(l / 2) - 1, -1, -1):
                p[row].append(p[row][pix])

        png.from_array(p, 'L').save(file_name + ".png")
        print("Parabola generation took ", time() - t, " seconds.")
        if open_paint:
            call(["mspaint", file_name + ".png"], shell=True)
Пример #20
0
def preprocess_gq(color_im,depth_im,depth_im_mask = None):
    if depth_im_mask is not None:
        # to mask the relevant parts of the image, if a mask is available 
        depth_im = depth_im_dif
    #convert to pypng format
    color_im = (65535*((color_im*color_im.min()/color_im.ptp())).astype(np.uint16))
    color_im = np.reshape(color_im, (-1, color_im.shape[1]*3))
#    import matplotlib.pyplot as plt
#    plt.imshow(color_im)
#    plt.show()

    #convert depth scale
    inputresolution = 0.0001 #(meter/unit)
    outputresolution = 1 #(meter/unit)
    mind = .2
    maxd = 15
    array = depth_im[:]
    array_in_meters = array*inputresolution
    array_in_meters[array_in_meters < mind] = mind
    array_in_meters[array_in_meters > maxd] = maxd
    array_in_meters  += 0.2 #arbitrary altering the distances to compare better to the dex net trainingset, needs be undone after evaluating the quality
    array = array_in_meters/outputresolution
    depth_im = array[:]

    #save in dexnetfolder
    dexnet_filename_color = 'color_0.png'
    dexnet_filename_depth = 'depth_0.npy'
    png.from_array(color_im,'RGB').save(dexnet_loadpath+"/data/own/"+dexnet_filename_color)
    np.save(dexnet_loadpath+"/data/own/"+dexnet_filename_depth,np.array(depth_im,dtype = 'float'))
def parabolaGen(h, l, open_paint=False, file_name="parabola_fine_horizontal",
                sqrt=math.sqrt, ceil=math.ceil):
    if _inputParser_(h, l):
        t = time()
        h = abs(int(h))
        l = abs(int(l))
        a = -4 * h / (l*l)
#Records the heights of the parabola at a certain position on the x-axis
        x = [(sqrt(a*(a*l**2+4*i+2))+a*l) / (2*a) for i in range(h-1, -1, -1)]

        p = [[] for i in range(h)]
        for dThreshold in range(1, ceil(l/2)+1):
            for pix in range(h):
                pixVal = 0
                if dThreshold > x[pix]:
                    pixVal = dThreshold - x[pix]
                    if pixVal > 1:
                        pixVal = 1
                p[pix].append(ceil(pixVal * 255))

        for row in range(h):
            for pix in range(int(l/2)-1, -1, -1):
                p[row].append(p[row][pix])

        png.from_array(p, 'L').save(file_name+".png")
        print("Parabola generation took ", time() - t, " seconds.")
        if open_paint:
            call(["mspaint", file_name+".png"], shell=True)
Пример #22
0
def createHeatMap():
    global mat

    maxVal = 0

    newMat = [[0 for x in range(windowWidth * 2)] for y in range(windowHeight)]

    # copy value in matrix (which is bigger than 0) to 3x3 neighborhood (for better visibility in final image)
    for x in range(1, windowHeight - 1):
        for y in range(2, windowWidth * 2, 2):
            val = mat[x][y]
            if (val > 0):
                for k in range(-1, 2):
                    for j in range(-2, 3, 2):
                        if (mat[x + k][y + j] <= val):
                            newMat[x + k][y + j] = val

    # get max click count
    for x in range(windowHeight):
        for y in range(0, windowWidth * 2, 2):
            if (newMat[x][y] > maxVal):
                maxVal = newMat[x][y]

    # convert click counts to intensity value
    if (maxVal != 0):
        for x in range(windowHeight):
            for y in range(0, windowWidth * 2, 2):
                newMat[x][y] *= int(255 / maxVal)
                if (newMat[x][y] > 0):
                    newMat[x][y + 1] = 255

    # save image
    png.from_array(newMat, 'LA').save("heat_map.png")
Пример #23
0
def displaypgm(bytes, width, name):
    a = []
    w = int(width)
    for i in range(len(bytes) / w):
        row = [bytes[x + (i * w)] for x in range(w)]
        a.append(row)
    png.from_array(a, "L").save(name)
Пример #24
0
def parabolaGen(h, l, open_paint=False, file_name="parabola"):
    if _inputParser_(h, l) is not None:
        t = time.time()
        h = abs(int(h))
        l = abs(int(l))
        a = -4 * h / (l * l)
        y = [_mround_(a * (i + 0.5) * (i + 0.5 - l)) for i in range(l)]

        p = []
        for i in range(h):
            p.append([])
            drawThreshold = h - 1 - i
            for j in range(math.ceil(l / 2)):
                pixVal = 0
                if y[j] > (drawThreshold):
                    pixVal = y[j] - drawThreshold
                    if pixVal > 1:
                        pixVal = 1
                p[i].append(math.ceil(pixVal * 255))

        for row in range(h):
            for pix in range(int(l / 2) - 1, -1, -1):
                p[row].append(p[row][pix])

        png.from_array(p, 'L').save(file_name + ".png")
        print("Parabola generation took ", time.time() - t, " seconds.")
        if open_paint:
            call(["mspaint", file_name + ".png"], shell=True)
Пример #25
0
def write_heatmap_to_png(a, filename, scale=1):
    a_shape = np.shape(a)
    colored = np.ndarray([a_shape[1] * scale, a_shape[2] * scale, 3], np.uint8)

    a_max = np.max(a)
    a_min = np.min(a)

    abs_max = max(abs(a_max), abs(a_min))

    for i in range(a_shape[1]):
        for j in range(a_shape[2]):
            val = a[0, i, j, 0]

            for n in range(scale):
                for m in range(scale):
                    ind_i = i * scale + n
                    ind_j = j * scale + m
                    colored[ind_i, ind_j, 0] = 0
                    colored[ind_i, ind_j, 1] = 0
                    colored[ind_i, ind_j, 2] = 0

                    if val > 0:
                        colored[ind_i, ind_j,
                                0] = abs(val * (255 / (abs_max + 0.001)))
                    else:
                        colored[ind_i, ind_j,
                                2] = abs(val * (255 / (abs_max + 0.001)))

    png.from_array(colored, 'RGB').save(filename)
Пример #26
0
def draw_table(results, size, out_name="/tmp/table.png"):
    #7C2529
    sat_color = (0xF1, 0xBE, 0x48)
    unsat_color = (0x7C, 0x25, 0x29)
    error_color = (0xFF, 0x00, 0x00)
    background_color = (0xFF, 0xFF, 0xFF)
    box_width = 8
    box_height = 8
    width = box_width * size
    height = box_height * size
    arr = []
    for i in range(0, height):
        na = []
        for j in range(0, width):
            na.append(background_color)
        arr.append(na)
    for i in range(0, size):
        for j in range(0, size):
            if results[i][j] == 0:
                continue

            color = error_color
            if results[i][j] == 10:
                color = sat_color
            elif results[i][j] == 20:
                color = unsat_color

            for x in range(box_width * i, box_width * i + box_width):
                for y in range(box_height * j, box_height * j + box_height):
                    arr[y][x] = color
    png.from_array(arr, 'RGB').save(out_name)
Пример #27
0
 def save_output(self, imgpath):
     '''Save img as output.
     '''
     label = np.uint16(self.img)
     directory = join(self.argdict['outputdir'], 'processed')
     filename = basename(imgpath).split('.')[0] + '.png'
     png.from_array(label, 'L').save(join(directory, filename))
Пример #28
0
    def writePngImages(self):
        #Seek to texture offset
        self.bs.seek_set(self.texOfs)

        #Check offset for texture definition
        iff = self.bs.readUInt()
        if iff != ShenmueModel.TEXD:
            return 0
        iffLen = self.bs.readUInt()
        #Read number of textures
        nbTex = self.bs.readUInt()
        texBase = os.path.splitext(self.fp)[0]

        #Loop through each texture
        for i in range(nbTex):

            #Look for pvr file header
            if not self.bs.find(ShenmueModel.PVRT):
                return 0

            #Length of pvrFile
            pvrLen = self.bs.readUInt()
            pvr = PvrTexture(self.bs, False, True)
            bitmap = pvr.getBitmap()

            if len(bitmap) == 0:
                continue

            texName = "output/%s_%02d.png" % (texBase, i)
            print(texName)
            png.from_array(bitmap, 'RGBA').save(texName)

        return 1
Пример #29
0
 def testfromarrayWrong(self):
     """Test incorrect mode handling"""
     try:
         png.from_array([[1]], 'gray')
     except png.Error:
         return
     assert 0, "Expected from_array() to raise png.Error exception"
Пример #30
0
    def __call__(self, args):
        super(ScreenshotCommand, self).__call__(args)
        screenshot = Screenshot(self.pebble)
        screenshot.register_handler("progress", self._handle_progress)

        self.progress_bar.start()
        try:
            image = screenshot.grab_image()
        except ScreenshotError as e:
            if self.pebble.firmware_version.major == 3 and self.pebble.firmware_version.minor == 2:
                # PBL-21154: Screenshots failing with error code 2 (out of memory)
                raise ToolError(
                    str(e) +
                    " (screenshots are known to be broken using firmware 3.2; try the emulator.)"
                )
            else:
                raise ToolError(str(e) + " (try rebooting the watch)")
        if not args.no_correction:
            image = self._correct_colours(image)
        image = self._roundify(image)
        self.progress_bar.finish()

        filename = self._generate_filename(
        ) if args.filename is None else args.filename
        png.from_array(image, mode='RGBA;8').save(filename)
        print("Saved screenshot to {}".format(filename))
        if not args.no_open:
            self._open(os.path.abspath(filename))
 def generate(self, output_path, n):
     if self.generate_function:
         img = self.generate_function(n)
         img = np.reshape(img, (n, 28, 28))
         img = np.reshape(img, (n * 28, 28))
         img = (img * 255.0).astype(np.uint8)
         png.from_array(img, mode='L').save(output_path)
Пример #32
0
def cifar10_pickle_to_png(cifar10_path):
    label_path = os.path.join(cifar10_path, 'batches.meta')
    meta_file = open(label_path, 'rb')
    labels = pickle.load(meta_file, encoding="ASCII")
    for fpath in os.scandir(cifar10_path):
        if 'data' not in fpath.name and 'test' not in fpath.name:
            continue
        f = open(fpath, 'rb')
        d = pickle.load(f, encoding='bytes')
        # decode utf8
        d_decoded = {}
        for k, v in d.items():
            d_decoded[k.decode('utf8')] = v

        d = d_decoded
        f.close()
        for i, filename in enumerate(d['filenames']):
            folder = os.path.join(
                cifar10_path,
                'cifar10',
                fpath.name,
                labels['label_names'][d['labels'][i]],
            )
            os.makedirs(folder, exist_ok=True)
            q = d['data'][i]
            print(filename)
            with open(os.path.join(folder, filename.decode()),
                      'wb') as outfile:
                png.from_array(q.reshape((32, 32, 3),
                                         order='F').swapaxes(0, 1),
                               mode='RGB').save(outfile)
Пример #33
0
def main(parentWidget=None, isQt=True):
    """
    Convenience function for basic use case.
    Get screenshot with ScreenshotOverlay, pass image to AnnotationWindow,
    and get the final edited image back.
    :parentWidget: optional QObject to use as parent for the windows
    :isQt: bool for whether there is an existing QApp running. Assumed True.
    :return: byte buffer object of image in PNG format
    """
    if not isQt:
        app = QApplication(sys.argv)
    try:
        snap = ScreenshotOverlay(parentWidget)
        with ScreenshotContext(snap):
            res = snap.exec_()
        if res:
            draw = AnnotationWindow(snap.img, parentWidget)
            draw.exec_()
            buf = BytesIO()
            s = draw.final_img.shape
            # png needs it converted into 2D array
            f = numpy.reshape(draw.final_img, (-1, s[1] * s[-1]))
            png.from_array(f, "RGBA;8").save(buf)
            return buf
    except:
        raise
    finally:
        if not isQt:
            app.quit()
Пример #34
0
def make_svg_file(pixels, fname, grayscale=False):

    if grayscale:
        pngimg = png.from_array(pixels, 'L')

    else:
        pngimg = png.from_array(pixels, 'RGB')

    pngfile = io.BytesIO()
    pngimg.save(pngfile)
    image = Image.open(pngfile).convert('RGB')
    imagedata = image.load()

    svgdata = ''
    svgdata += ('<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n')
    svgdata += (
        '<svg id="svg2" xmlns="http://www.w3.org/2000/svg" version="1.1" width="%(x)i" height="%(y)i" viewBox="0 0 %(x)i %(y)i">\n'
        % {
            'x': image.size[0],
            'y': image.size[1]
        })

    for y in range(image.size[1]):
        for x in range(image.size[0]):
            rgb = imagedata[x, y]
            rgb = '#%02x%02x%02x' % rgb
            svgdata += (
                '<rect width="1" height="1" x="%i" y="%i" fill="%s" />\n' %
                (x, y, rgb))

    svgdata += ('</svg>\n')

    with open(fname, 'w') as f:
        f.write(svgdata)
    def test_calculate_gradient_equals_zero_rectangle_area(self):
        pixels = (np.random.rand(150 * 150) < 0.5).astype(np.int16)
        pixels = pixels.reshape(150, 150)
        for x in range(0, 150):
            for y in range(0, 150):
                pixels[x][y] = 0
        pixels[0][0] = 0
        pixels[0][1] = 0
        pixels[0][2] = 0

        pixels[1][0] = 0
        pixels[1][1] = 0
        pixels[1][2] = 0

        pixels[2][0] = 0
        pixels[2][1] = 0
        pixels[2][2] = 0

        png.from_array(pixels, 'L').save("../Dane/rectangle__foo.png")
        myImage = Image("../Dane/rectangle__foo.png", 0)
        position = Position(1, 1)
        size = Size(10, 10)
        rArea = RectangleArea(myImage, position.x, position.y, size.height,
                              size.width)
        histogram = rArea.create_histogram()

        self.assertAlmostEqual(histogram.get(0), 0.0, delta=0.01)
        self.assertAlmostEqual(histogram.get(1), 0.0, delta=0.01)
        os.remove("../Dane/rectangle__foo.png")
Пример #36
0
def encode(message):
    """Encode the message string into images based on PNGs in pool/, 
	and store the resulting images in encoded/.
	"""
    if len(message) == 0:
        return

    pool_list = ["pool/" + f for f in os.listdir("pool/") if '.png' in f]
    assert len(message) <= max_length()

    int_list = [ord(c) for c in message] + [0]

    for i in range(len(pool_list)):
        pool_im = mpng.read_png_int(pool_list[i])

        assert pool_im.shape[2] == 3  #check if RGB image

        # print(len(tiles(pool_im.shape[0], pool_im.shape[1])), (pool_im.shape[0]//2) * (pool_im.shape[1]//8))
        for tile in tiles(pool_im.shape[0], pool_im.shape[1]):
            encode_int(pool_im, tile, int_list.pop(0))

            if len(int_list) == 0:
                break

        png.from_array(pool_im,
                       mode='RGB').save("encoded/image_{0}.png".format(i))

        if len(int_list) <= 1:
            break

    return
    def test_calculate_gradient_with_same_difference_circle_area(self):
        pixels = (np.random.rand(150 * 150) < 0.5).astype(np.int16)
        pixels = pixels.reshape(150, 150)

        for x in range(0, 150):
            for y in range(0, 150):
                pixels[x][y] = 0

        pixels[0][0] = 0
        pixels[0][1] = 100
        pixels[0][2] = 0

        pixels[1][0] = 150
        pixels[1][1] = 0
        pixels[1][2] = 250

        pixels[2][0] = 0
        pixels[2][1] = 200
        pixels[2][2] = 0

        png.from_array(pixels, 'L').save("../Dane/circle__foo.png")
        myImage = Image("../Dane/circle__foo.png", 0)
        position = Position(50, 50)
        radius = 50
        cArea = CircleArea(myImage, position.x, position.y, radius)
        histogram = cArea.create_histogram()
        for x in range(0, 8):
            if histogram.get(x) != 0:
                print(str(x) + ": " + str(histogram.get(x)))

        self.assertAlmostEqual(histogram.get(5), 0.0, delta=0.05)
        self.assertAlmostEqual(histogram.get(6), 0.0, delta=0.05)
        os.remove("../Dane/circle__foo.png")
Пример #38
0
def write_tuple(rounds, places, run_return):
    out_name = "images/" + run_return + "-r" + str(rounds) + "-p" + '-'.join(map(str, places)) + ".png"

    #7C2529
    difference = (0xFF, 0x00, 0x00)
    no_difference = (0x00, 0x00, 0xFF)
    background_color = (0xFF, 0xFF, 0xFF)
    box_width = 1
    box_height = 1
    image_width = 16
    image_height = 3
    width = box_width*image_width
    height = box_height*image_height
    arr = []
    for i in range(0, height):
        na = []
        for j in range(0, width):
            na.append(background_color)
        arr.append(na)

    for i in range(0, rounds):
        bx = i % image_width
        by = i // image_width
        for x in range(box_width*bx, box_width*bx + box_width):
            for y in range(box_height*by, box_height*by + box_height):
                arr[y][x] = no_difference

    for i in places:
        bx = i % image_width
        by = i // image_width
        for x in range(box_width*bx, box_width*bx + box_width):
            for y in range(box_height*by, box_height*by + box_height):
                arr[y][x] = no_difference

    png.from_array(arr, 'RGB').save(out_name)
Пример #39
0
def parabolaGen(h, l, open_paint=False, file_name="parabola_antialiased"):
    """parabolaGen help:

    parabolaGen(h, l)

    Let h be the height of the parabola. It must be a number greater than 0.
    Let l be the length of the parabola. It must also be a greater than 0.
    You can also use pGen(h, l) as a shortcut.
    """
    if _inputParser_(h, l):
        t = time()
        h = abs(ceil(h))
        l = abs(ceil(l))
        a = -4 * h / (l * l)
        sff = round(h + (l**2 - 16 * h**2) / (16 * h))

        #Records the heights of the parabola at a certain position on the x-axis
        if sff <= h:
            p = parabola_vBiased(h, sff, l, a) + parabola_hBiased(h, sff, l, a)
        else:
            p = parabola_vBiased(h, h, l, a)

        for row in range(h):
            p[row] += [p[row][pix] for pix in range(int(l / 2) - 1, -1, -1)]

        from_array(p, 'L').save(file_name + ".png")
        print("Parabola generation took", time() - t, "seconds.")
        if open_paint:
            call(["mspaint", file_name + ".png"], shell=True)
        return
Пример #40
0
    def _work(self, f):

        consider = True if self.re is None else f.find(self.re) > -1
        if consider:
            print(f"Processing {f}")
            fp = pathlib.Path(self.source_path, f).absolute()
            #tarpath= f.replace(".tar.gz" , ".log")
            year = re.findall("F\d{2}(\d{4}).v", f)[0]
            image = self.helper.read_img_path(fp)

            print(f"-- Extraction Started")

            for country in self.countries:
                op = pathlib.Path(self.dest_path,
                                  f"{country}_{year}.png").absolute()
                if not os.path.exists(op):
                    print(f"--- Country - {country}")
                    try:
                        subimg = self.helper.subset_country(image, country)
                        print(subimg.shape)
                        png.from_array(subimg[0, :, :], 'L').save(op)
                    except Exception as e:
                        print(e)
                        print(f"Failed - {op}")
            #shutil.copyfile(pathlib.Path(expath , f).absolute() , pathlib.Path(expath , f).absolute())
            print(f"-- Extraction done")
Пример #41
0
 def request_overlay(self, request):
     pixels = np.zeros((256, 256, 4), np.uint8)
     pixels[:] = (255, 0, 0, 100)
     pixels[::16, :, :] = (255, 0, 0, 255)
     pixels[:, ::32, :] = (255, 0, 0, 255)
     buf = io.BytesIO()
     png.from_array(pixels, mode="RGBA").save(buf)
     return web.Response(body=buf.getvalue())
Пример #42
0
    def mk_png(self, png_name):
        if self.count:
            png.from_array([row[: self.count] for row in self.grid], "L").save(png_name)
        else:
            # no audio data, make a 1x1 png
            png.from_array([(0, 0)], "L").save(png_name)

        return True
Пример #43
0
 def test_render_image(self, f):
     pix2d = [[0]*(self.width*4) for i in range(self.height)]
     for cube in self.cubes:
         if (cube.position.x, cube.position.y) in self.positions2d:
             pix2d[cube.position.y][((cube.position.x+1) * 4)-4] = cube.colour.r
             pix2d[cube.position.y][((cube.position.x+1) * 4)-3] = cube.colour.g
             pix2d[cube.position.y][((cube.position.x+1) * 4)-2] = cube.colour.b
             pix2d[cube.position.y][((cube.position.x+1) * 4)-1] = cube.colour.a
     png.from_array(pix2d, 'RGBA').save(f)
Пример #44
0
def exportComparison(data, reconstruction, filename):
	img = np.empty([data.shape[3] * 2, data.shape[2] * data.shape[0]], dtype = np.uint8);
	for imageRow in range(2):
		if (imageRow == 0):
			set = data;
		else:
			set = reconstruction;
		for i in range(data.shape[0]):
			img[(imageRow * data.shape[3]):((imageRow + 1) * data.shape[3]), (i * data.shape[2]):((i + 1) * data.shape[2])] = 255 * set[i, 0, :, :];
	png.from_array(img, 'L').save(filename);
Пример #45
0
def GetColoursForGreedyPixels():    
    # Make a new searchable colour space
    colourSpace = SearchableColourSpace(colourBits, colourReuse)

    # Insert one pixel from the list to the image in a random spot - place neighbours in PixelQueue
    image = GreedyPixelList(width, height)
    
    RandR, RandG, RandB = (random.randint(0, 2**colourBits-1),
                           random.randint(0, 2**colourBits-1),
                           random.randint(0, 2**colourBits-1))
        
    startx, starty = (randint(0,width-1),randint(0,height-1))
    
    image[startx][starty] = (RandR, RandG, RandB, -1)
    
    image.UpdateNeighbours(startx,starty)
    
    colourSpace.FlagColourAsUsed(RandR, RandG, RandB)
        
    i = 1
    
    for pixel in image.NextPixel():
        NearbyColours = colourSpace.GetNearestNeighbours(pixel[0:3])
        
        assert(NearbyColours is not None)
        if(len(NearbyColours) <= 0):
            print "aaarg! ",
            pixel.printTarget()
            png.from_array(image.FlatRows(), "RGB", {"height":height,"bitdepth":colourBits}).save(fileName+".png")
            raise Exception("Aaaerg!") 


        BestMatch = None
        for CurrentColour in NearbyColours:
            if ( BestMatch is None ):
                BestMatch = CurrentColour
            if  (GetHueDist(pixel[0:3], CurrentColour) < \
                 GetHueDist(pixel[0:3], BestMatch)):
                BestMatch = CurrentColour
            
        pixel[3] = -1
        pixel[0:3] = BestMatch
        
        colourSpace.FlagColourAsUsed(RGB=BestMatch)
        
        image.UpdateNeighbours()
        i += 1
        if (i%1000 == 0):
            print i, datetime.now()- StartTime
        if (i%imageInterval == 0):
            MakeImageThread = threading.Thread(target = MakeImage, args=(image, height, colourBits, fileName+"_"+str(i/imageInterval)+".png"))
            MakeImageThread.start()
    

    MakeImage(image, height, colourBits, fileName+".png")
Пример #46
0
def worker(tpl):
    it, fn = tpl
    data = load(fn)
    if len(data.shape) == 3:
        data = data[0,:,:]
    data = (data - fmin) / (fmax - fmin)
    if (rmin != None) and (rmax != None) and (cmin != None) and (cmax != None):
        data = data[rmin:rmax, cmin:cmax]
    shape = data.shape
    data = cmap(data, bytes=True)[:,:,:3].reshape((shape[0], shape[1] * 3))
    png.from_array(data, 'RGB;8').save(('%s/out_%0'+str(fmtlen)+'d.png') % (tdir,it))
Пример #47
0
def save_image(path):
    image_list = []
    for y in range(HEIGHT):
        current_row = []
        for x in range(WIDTH):
            if (x, y) in image:
                colour = image[(x, y)]
                current_row += [clamp(colour[0]), clamp(colour[1]), clamp(colour[2]), 255]
            else:
                current_row += [0, 0, 0, 0]
        image_list.append(current_row)
    png.from_array(image_list, "RGBA").save(path)
Пример #48
0
    def _Save(self, filename):
        img = self.drawWindow.drawControl.image
        data = list()

        for y in range(img.GetHeight()):
            line = array("B")
            for x in range(img.GetWidth()):
                line.append(img.GetRed(x, y))
                line.append(img.GetGreen(x, y))
                line.append(img.GetBlue(x, y))
                line.append(img.GetAlpha(x, y))
            data.append(line)

        png.from_array(data, "RGBA").save(filename)
Пример #49
0
    def _repr_png_(self, _crop_box=None):
        """Hook for IPython Notebook

        See: http://ipython.org/ipython-doc/stable/config/integrating.html
        """
        if _crop_box or self.trans:
            if not _crop_box:
                _crop_box = 0, 0, self.width, self.height
            left, up, right, low = _crop_box
            data = [l[left * 4:right * 4] for l in self.image_data[up:low]]
            out = BytesIO()
            png.from_array(data, 'RGBA').save(out)
            return out.getvalue()
        return self.data
Пример #50
0
def main(wb):
    wb.open()
    regs = wb.regs
    # # #
    print("dumping framebuffer memory...")
    dump = []
    for n in range(DUMP_SIZE//(WORDS_PER_PACKET*4)):
        data = wb.read(SDRAM_BASE + n*WORDS_PER_PACKET*4, WORDS_PER_PACKET)
        for pixel in data:
            dump += extract_rgb(pixel)
    dump = [dump[x:x+LINE_SIZE] for x in range(0, len(dump), LINE_SIZE)]
    print("dumping to png file...")
    png.from_array(dump, "RGB").save("dump.png")
    # # #
    wb.close()
Пример #51
0
def data(lines):
  img = png.from_array(lines, 'RGB')

  buff.seek(0)
  writer.write(buff, img.rows)

  return buff.getvalue()
Пример #52
0
  def Crop(self, left, top, width, height):
    """Returns a new PngBitmap that represents the specified sub-rect of this
    PngBitmap"""

    if (left < 0 or top < 0 or
        (left + width) > self.width or
        (top + height) > self.height):
      raise Exception('Invalid dimensions')

    img_data = [[0 for x in xrange(width * 4)] for x in xrange(height)]

    # Copy each pixel in the sub-rect
    for y in range(height):
      for x in range(width):
        c = self.GetPixelColor(x + left, y + top)
        offset = x * 4
        img_data[y][offset] = c.r
        img_data[y][offset+1] = c.g
        img_data[y][offset+2] = c.b
        img_data[y][offset+3] = c.a

    # This particular method can only save to a file, so the result will be
    # written into an in-memory buffer and read back into a PngBitmap
    crop_img = png.from_array(img_data, mode='RGBA')
    output = cStringIO.StringIO()
    try:
      crop_img.save(output)
      crop_png = PngBitmap(output.getvalue())
    finally:
      output.close()

    return crop_png
Пример #53
0
 def testfromarrayIter(self):
     """Test writing from iterator"""
     i = itertools.islice(itertools.count(10), 20)
     i = [[x, x, x] for x in i]
     img = png.from_array(i, 'RGB;5', dict(height=20))
     f = BytesIO()
     img.save(f)
Пример #54
0
    def Crop(self, left, top, width, height):
        """Returns a new Bitmap that represents the specified sub-rect of this."""

        if left < 0 or top < 0 or (left + width) > self.width or (top + height) > self.height:
            raise ValueError("Invalid dimensions")

        img_data = [[0 for x in xrange(width * 4)] for x in xrange(height)]

        # Copy each pixel in the sub-rect.
        # TODO(tonyg): Make this faster by avoiding the copy and artificially
        # restricting the dimensions.
        for y in range(height):
            for x in range(width):
                c = self.GetPixelColor(x + left, y + top)
                offset = x * 4
                img_data[y][offset] = c.r
                img_data[y][offset + 1] = c.g
                img_data[y][offset + 2] = c.b
                img_data[y][offset + 3] = c.a

        # This particular method can only save to a file, so the result will be
        # written into an in-memory buffer and read back into a Bitmap
        crop_img = png.from_array(img_data, mode="RGBA")
        output = cStringIO.StringIO()
        try:
            crop_img.save(output)
            crop = Bitmap.FromPng(output.getvalue())
        finally:
            output.close()

        return crop
def main(params) :
	
    name = params["name"]
    pixel = params["pixel_size"]
    dims = params["size"] - 2
    colors = ( params["background_color"], (randint(0, 255), randint(0, 255), randint(0, 255)) )
    
    matrix = lambda : [[colors[0]]] + [[choice(colors)] for i in range(dims)] + [[colors[0]]]
    matrizen = list()
    
    for i in range(dims // 2 + dims % 2) :
    	matrizen.append(matrix())
    for i in range(dims // 2)[::-1] :
    	matrizen.append(matrizen[i])
    
    matrizen.insert(0, [[colors[0]] for i in range(dims+2)])
    matrizen.append([[colors[0]] for i in range(dims+2)])
    
    array = numpy.concatenate(matrizen, axis=1)
    array = array.repeat(pixel, axis=0).repeat(pixel, axis=1)
    array = numpy.array( [[ val for triple in dim for val in triple] for dim in array] )
    
    img = png.from_array(array, "RGB")
    img.info["bitdepth"] = 8
    img.save(name)
Пример #56
0
 def write_png(self, pngfile):
     print("pngfile {}".format(pngfile))
     if self._finished is False:
         self._finish_pixel()
         self._finished = True
     if self.size > self.order:
         scale = 2 ** (self.size - self.order)
         height = int(self.height * scale)
         width = int(self.width * scale)
         hscale = height / self.height
         wscale = width / self.width
         image = png.from_array(([self._grid[int(y//hscale)][int(x//wscale)]
                                 for x in xrange(width)]
                                for y in xrange(height)), 'L', info={'height': height})
     else:
         image = png.from_array(self._grid, 'L')
     image.save(pngfile)
Пример #57
0
    def testNumpyarray(self):
        """numpy array."""

        numpy or self.skipTest("numpy is not available")

        pixels = numpy.array([[0,0x5555],[0x5555,0xaaaa]], numpy.uint16)
        img = png.from_array(pixels, 'L')
        img.save(BytesIO())
Пример #58
0
def apply_color():
    image = open(args.original_file)
    r=png.Reader(file=image)
    imageArray = list(r.read()[2])
    newImage = open(args.new_file,"wb")
    w=png.Writer(len(imageArray[0]),len(imageArray))
    newArray = list()
    width = len(imageArray[0])
    for y in range(len(imageArray)):
        newArray.append(list())
        for x in range(width):
            color = imageArray[y][x]
            hsv = colorsys.rgb_to_hsv(color/255.0,color/255.0,color/255.0)
            rgb = colorsys.hsv_to_rgb(args.hue[0]/360.0,args.saturation[0]/100.0, hsv[2]*(1-colorValueRangeMin) + colorValueRangeMin)
            for i in range(3):
                newArray[y].append(rgb[i]*255)
    png.from_array(newArray,'RGB').save(newImage)
    return imageArray
Пример #59
0
def render():
    global bitmap
    resized = [[0 for _ in range(3*Xdim)] for _ in range(Ydim)]
    for i in range(Xdim):
        for j in range(Ydim):
            resized[j][i*3 + 0] = bitmap[i][j][0]
            resized[j][i*3 + 1] = bitmap[i][j][1]
            resized[j][i*3 + 2] = bitmap[i][j][2]
    pic = png.from_array(resized, mode='RGB;8')
    return pic
Пример #60
0
def createPngFromBlockTuples(tupleList, levelSize, name='pngtest.png'): # where tupleList is a list of block position tuples, levelSize is a tuple of x,y level size
    width, height = levelSize
    pngList = [[0 for y in xrange(height)] for x in xrange(width)]
    for t in tupleList: # I could probably use list comprehensions here
        print str(t)
        x,y = t
        column = pngList[y]
        column[x] = 255
    image = png.from_array(pngList, mode='L') # grayscale
    image.save(name)