Пример #1
0
def demo():
    inputSentence = input("Enter your sentence: ")
    print("============" + p + "===================")
    print(type(p))

    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)

    evaluate(ptrNet, inputSentence)
Пример #2
0
def processSingle(path):
    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)

    ptrNet.load_state_dict(torch.load(path))

    nlp = spacy.load("en_core_web_sm")
    sentences = [
        "this is definitely a difficult sentence", "your plan seems excellent",
        "it is really working", "let me start with a poem",
        "he is sure to pass the exam", "we meet every wednesday",
        "do plan to we it tomorrow", "i like working on brain",
        "development good is a this", "i am going to canada",
        "The script that I am describing here mainly for training and validation "
    ]

    if True:
        for origLine in sentences:
            print("")
            inputLine, outputLine = processSentence(nlp, ptrNet, origLine)
            print("Input Sentence: ", inputLine)
            print("Outpt Sentence: ", outputLine)
            print("Orig  Sentence: ", origLine)

    else:
        lines = open("../data/englishSentences_test.dat").read().splitlines()
        for i in range(7):
            print("\n")
            origLine = random.choice(lines)
            inputLine, outputLine = processSentence(nlp, ptrNet, origLine)
            print("Input Sentence: ", inputLine)
            print("Outpt Sentence: ", outputLine)
            print("Orig  Sentence: ", origLine)
Пример #3
0
def modelEvaluate(path):
    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)

    ptrNet.load_state_dict(torch.load(path))
    evaluateWordSort(ptrNet, 1)
Пример #4
0
def modelEvaluate(accuracyStats, path):
    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)

    ptrNet.load_state_dict(torch.load(path))
    for epoch in range(EPOCHS):
        evaluateWordSort(accuracyStats, ptrNet, 1)
    printAccStats(accuracyStats)
Пример #5
0
def modelEvaluate(accuracyStats, path):
    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)

    ptrNet.load_state_dict(torch.load(path))
    for sentenceLength in range(4, 11):
        print(sentenceLength)
        evaluateWordSort(accuracyStats, ptrNet, sentenceLength)
    printAccStats(accuracyStats)
Пример #6
0
def modelTrainAndSave(path):
    if config.GPU == True:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
    else:
        ptrNet = PointerNetwork(config.HIDDEN_SIZE)
    optimizer = optim.Adam(ptrNet.parameters())

    program_starts = time.time()
    for epoch in range(EPOCHS):
        train(ptrNet, optimizer, epoch + 1)
        evaluateWordSort(ptrNet, epoch + 1)

    torch.save(ptrNet.state_dict(), path)

    now = time.time()
    print("It has been {0} seconds since the loop started".format(
        now - program_starts))
Пример #7
0
    for i in range(out.size(0)):
        print("=============================================")
        print(
            "yref",
            y_val[i],
            out[i],
            y_val[i] - out[i],
        )

        xv = convertToWordSingle(x_val[i])
        print("orig", xv)
        v = out[i].numpy()
        print("[", end="")
        for index in v:
            print(xv[index] + ", ", end="")

        print("]")


ptrNet = PointerNetwork(config.HIDDEN_SIZE)
optimizer = torch.optim.Adam(ptrNet.parameters())

program_starts = time.time()
for epoch in range(EPOCHS):
    train(ptrNet, optimizer, epoch + 1)
    evaluateWordSort(ptrNet, epoch + 1)

now = time.time()
print("It has been {0} seconds since the loop started".format(now -
                                                              program_starts))
Пример #8
0
    out, _ = model(x_val, y_val, teacher_force_ratio=0.)
    out = out.permute(1, 0)

    for i in range(out.size(0)):
        print("=============================================")
        print("yref", y_val[i], out[i], y_val[i] - out[i])

        print("orig", text_val[i])
        v = torch.Tensor.cpu(out[i]).numpy()
        print("[", end="")
        for index in v:
            print(text_val[i][index] + " ", end="")

        print("]")


if config.GPU == True:
    ptrNet = PointerNetwork(config.HIDDEN_SIZE).cuda()
else:
    ptrNet = PointerNetwork(config.HIDDEN_SIZE)
optimizer = optim.Adam(ptrNet.parameters())

program_starts = time.time()
for epoch in range(EPOCHS):
    train(ptrNet, optimizer, epoch + 1)
    evaluateWordSort(ptrNet, epoch + 1)

now = time.time()
print("It has been {0} seconds since the loop started".format(now -
                                                              program_starts))