Пример #1
0
optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
classifier.cuda()

num_batch = len(dataset) / opt.batchSize

for epoch in range(opt.nepoch):
    scheduler.step()
    for i, data in enumerate(dataloader, 0):
        points, target = data
        target = target[:, 0]
        points = points.transpose(2, 1)
        points, target = points.cuda(), target.cuda()
        optimizer.zero_grad()
        classifier = classifier.train()
        pred, trans, trans_feat = classifier(points)
        loss = F.nll_loss(pred, target)
        if opt.feature_transform:
            loss += feature_transform_regularizer(trans_feat) * 0.001
        loss.backward()
        optimizer.step()
        pred_choice = pred.data.max(1)[1]
        correct = pred_choice.eq(target.data).cpu().sum()
        print('[%d: %d/%d] train loss: %f accuracy: %f' %
              (epoch, i, num_batch, loss.item(),
               correct.item() / float(opt.batchSize)))

        if i % 10 == 0:
            j, data = next(enumerate(testdataloader, 0))
            points, target = data
Пример #2
0
def our_main():
    from utils.show3d_balls import showpoints
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--batchSize', type=int, default=32, help='input batch size')
    parser.add_argument(
        '--num_points', type=int, default=2000, help='input batch size')
    parser.add_argument(
        '--workers', type=int, help='number of data loading workers', default=4)
    parser.add_argument(
        '--nepoch', type=int, default=250, help='number of epochs to train for')
    parser.add_argument('--outf', type=str, default='cls', help='output folder')
    parser.add_argument('--model', type=str, default='', help='model path')
    parser.add_argument('--dataset', type=str, required=True, help="dataset path")
    parser.add_argument('--dataset_type', type=str, default='shapenet', help="dataset type shapenet|modelnet40")
    parser.add_argument('--feature_transform', action='store_true', help="use feature transform")

    opt = parser.parse_args()
    print(opt)

    blue = lambda x: '\033[94m' + x + '\033[0m'

    opt.manualSeed = random.randint(1, 10000)  # fix seed
    print("Random Seed: ", opt.manualSeed)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    if opt.dataset_type == 'shapenet':
        dataset = ShapeNetDataset(
            root=opt.dataset,
            classification=True,
            npoints=opt.num_points)

        test_dataset = ShapeNetDataset(
            root=opt.dataset,
            classification=True,
            split='test',
            npoints=opt.num_points,
            data_augmentation=False)
    elif opt.dataset_type == 'modelnet40':
        dataset = ModelNetDataset(
            root=opt.dataset,
            npoints=opt.num_points,
            split='trainval')

        test_dataset = ModelNetDataset(
            root=opt.dataset,
            split='test',
            npoints=opt.num_points,
            data_augmentation=False)
    else:
        exit('wrong dataset type')


    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=opt.batchSize,
        shuffle=True,
        num_workers=int(opt.workers))

    testdataloader = torch.utils.data.DataLoader(
            test_dataset,
            batch_size=opt.batchSize,
            shuffle=True,
            num_workers=int(opt.workers))

    print(len(dataset), len(test_dataset))
    num_classes = len(dataset.classes)
    print('classes', num_classes)

    try:
        os.makedirs(opt.outf)
    except OSError:
        pass

    classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform)

    if opt.model != '':
        classifier.load_state_dict(torch.load(opt.model))


    optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
    classifier.cuda()

    num_batch = len(dataset) / opt.batchSize

    ## python train_classification.py --dataset ../dataset --nepoch=4 --dataset_type  shapenet
    for epoch in range(opt.nepoch):
        scheduler.step()
        for i, data in enumerate(dataloader, 0):
            points, target = data
            target = target[:, 0]
            showpoints(points[0].numpy())
            points = points.transpose(2, 1)
            points, target = points.cuda(), target.cuda()
            optimizer.zero_grad()
            classifier = classifier.train()
            pred, trans, trans_feat = classifier(points)
            loss = F.nll_loss(pred, target)
            if opt.feature_transform:
                loss += feature_transform_regularizer(trans_feat) * 0.001
            loss.backward()
            optimizer.step()
            pred_choice = pred.data.max(1)[1]
            correct = pred_choice.eq(target.data).cpu().sum()
            print('[%d: %d/%d] train loss: %f accuracy: %f' % (epoch, i, num_batch, loss.item(), correct.item() / float(opt.batchSize)))

            if i % 10 == 0:
                j, data = next(enumerate(testdataloader, 0))
                points, target = data
                target = target[:, 0]
                points = points.transpose(2, 1)
                points, target = points.cuda(), target.cuda()
                classifier = classifier.eval()
                pred, _, _ = classifier(points)
                loss = F.nll_loss(pred, target)
                pred_choice = pred.data.max(1)[1]
                correct = pred_choice.eq(target.data).cpu().sum()
                print('[%d: %d/%d] %s loss: %f accuracy: %f' % (epoch, i, num_batch, blue('test'), loss.item(), correct.item()/float(opt.batchSize)))

        torch.save(classifier.state_dict(), '%s/cls_model_%d.pth' % (opt.outf, epoch))

    total_correct = 0
    total_testset = 0
    for i,data in tqdm(enumerate(testdataloader, 0)):
        points, target = data
        target = target[:, 0]
        points = points.transpose(2, 1)
        points, target = points.cuda(), target.cuda()
        classifier = classifier.eval()
        pred, _, _ = classifier(points)
        pred_choice = pred.data.max(1)[1]
        correct = pred_choice.eq(target.data).cpu().sum()
        total_correct += correct.item()
        total_testset += points.size()[0]

    print("final accuracy {}".format(total_correct / float(total_testset)))
Пример #3
0
# Moves all model parameters and buffers to the GPU.
classifier.cuda()

num_batch = len(dataset) / opt.batchSize  # 计算batch的数量

for epoch in range(opt.nepoch):
    scheduler.step()
    # 将一个可遍历对象组合为一个索引序列,同时列出数据和数据下标,(0, seq[0])...
    # __init__(self, iterable, start=0),参数为可遍历对象及起始位置
    for i, data in enumerate(dataloader, 0):
        points, target = data
        target = target[:, 0]  # 取所有行的第0列
        points = points.transpose(2, 1)  # 维度交换
        points, target = points.cuda(), target.cuda()  # tensor转到cuda上
        optimizer.zero_grad()  # 梯度清除,避免backward时梯度累加
        classifier = classifier.train()  # 训练模式,使能BN和dropout
        pred, trans, trans_feat = classifier(points)  # 网络结果预测输出
        loss = F.nll_loss(
            pred, target)  # 损失函数:负log似然损失,在分类网络中使用了log_softmax,二者结合其实就是交叉熵损失函数
        if opt.feature_transform:
            loss += feature_transform_regularizer(trans_feat) * 0.001
        loss.backward()  # loss反向传播
        optimizer.step()  # 梯度下降,参数优化
        pred_choice = pred.data.max(1)[1]  # max(1)返回每一行中的最大值及索引,[1]取出索引(代表着类别)
        correct = pred_choice.eq(
            target.data).cpu().sum()  # 判断和target是否匹配,并计算匹配的数量
        print('[%d: %d/%d] train loss: %f accuracy: %f' %
              (epoch, i, num_batch, loss.item(),
               correct.item() / float(opt.batchSize)))

        # 每10次batch之后,进行一次测试
Пример #4
0
print(len(dataset)) # 12137的训练数据集的迭代器, 每个迭代器32个3维模型   相当于dataset中一共读入了12137*32=388384个三维模型
num_batch = len(dataset) / opt.batchSize    # 所以每次参与训练的迭代器数量为 12137 / 32= 379.28个迭代器, 三维模型为 379*32=12128
print('num_batch: %d' % (num_batch))


# 5. 正式开始训练
for epoch in range(opt.nepoch):                 # opt.nepoch = 5, 训练5次
    scheduler.step()                            # 更新一下学习率 每step_size=20 调整一次
    # n = 0
    for i, data in enumerate(dataloader, 0):    # enumerate在字典上是枚举、列举的意思, enumerate参数为可遍历/可迭代的对象(如列表、字符串), 后面的0是索引从0开始
        points, target = data
        target = target[:, 0]
        points = points.transpose(2, 1)
        points, target = points.cuda(), target.cuda()   # 复制到cuda上进行计算
        optimizer.zero_grad()                           # 梯度清零,等价于net.zero_grad()
        classifier = classifier.train()                 # 模型设置为训练模式
        pred, trans, trans_feat = classifier(points)
        # print(pred.shape) torch.Size([32, 16])
        loss = F.nll_loss(pred, target)                 # 使用nll_loss损失函数, 传入预测的分数矩阵和真实标签值target, nll损失函数的计算方法见:https://blog.csdn.net/qq_22210253/article/details/85229988
        if opt.feature_transform:
            loss += feature_transform_regularizer(trans_feat) * 0.001
        loss.backward()                                 # 小批量的损失对模型参数求梯度
        optimizer.step()                                # 梯度下降优化 以batch为单位, 通过调用optim实例的step函数来迭代模型参数, w, b
        pred_choice = pred.data.max(1)[1]
        correct = pred_choice.eq(target.data).cpu().sum().item()
        # n += target.shape[0]
        print('[%d: %d/%d] train loss: %f accuracy: %f' % (epoch, i, num_batch, loss.item(), correct / float(opt.batchSize)))

        if i % 10 == 0:         # 每10个batch执行一次,即为每10*batchSize个点云执行一次验证
            j, data = next(enumerate(testdataloader, 0))
            points, target = data