def get_model_scores(model_features, is_training, n_classes, bn_decay=None): debug = {} net = tf_util.fully_connected(model_features, 512, bn=False, is_training=is_training, scope='fc1', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') debug['fc1'] = net net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training, scope='fc2', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp2') debug['fc2'] = net net = tf_util.fully_connected(net, n_classes, activation_fn=None, scope='fc3') debug['fc3'] = net return net, debug
def make_fc(pcl_image, is_training, n_feats, n_classes, name='fc', keep_prob=None, activation=tf.nn.relu, debug=None): """ Construct the features and logits of the network via fully connected layers. :param pcl_image: A 4D pointcloud image :param is_training: A node indicating whether we are in training mode :param n_feats: An array specifying the number of point features at each fully-connected layer. :param n_classes: The number of output classes. :param keep_prob: The keep probability for the dropout after each fully connected layer. :param activation: The activation function to apply after each convolution. :param debug: A dictionary to store direct access to each layer, optional. :return: The features vector, and the logits vectors. """ assert len(pcl_image.shape) == 4 net = pcl_image net = tf.squeeze(net, axis=2, name='squeeze_pcl') net = tf.reduce_max(net, axis=1, name='pcl_reduce_max') with tf.variable_scope(name): for i, n_feat in enumerate(n_feats): curr_name = 'fc%d' % (i + 1) net = tf_util.fully_connected(net, n_feat, bn=False, is_training=is_training, scope=curr_name, activation_fn=activation) if debug is not None: debug[curr_name] = net if keep_prob is not None and keep_prob < 1: curr_name = curr_name + '_drop' net = tf_util.dropout(net, keep_prob=keep_prob, is_training=is_training, scope=curr_name) if debug is not None: debug[curr_name] = net features = net logits = tf_util.fully_connected(net, n_classes, activation_fn=None, scope='logits') if debug is not None: debug['logits'] = logits return features, logits
def get_transform_K(inputs, is_training, bn_decay=None, K=3): """ Transform Net, input is BxNx1xK gray image Return: Transformation matrix of size KxK """ batch_size = inputs.get_shape()[0].value num_point = inputs.get_shape()[1].value net = tf_util.conv2d(inputs, 256, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay) net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='tmaxpool') net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_feat') as sc: weights = tf.get_variable('weights', [256, K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) + tf.constant( np.eye(K).flatten(), dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) #transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3') transform = tf.reshape(transform, [batch_size, K, K]) return transform
def get_transform(point_cloud, is_training, bn_decay=None, K=3): """ Transform Net, input is BxNx3 gray image Return: Transformation matrix of size 3xK """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value input_image = tf.expand_dims(point_cloud, -1) net = tf_util.conv2d(input_image, 64, [1, 3], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv4', bn_decay=bn_decay) net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='tmaxpool') net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 128, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_XYZ') as sc: assert (K == 3) weights = tf.get_variable('weights', [128, 3 * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [3 * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) + tf.constant( [1, 0, 0, 0, 1, 0, 0, 0, 1], dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) #transform = tf_util.fully_connected(net, 3*K, activation_fn=None, scope='tfc3') transform = tf.reshape(transform, [batch_size, 3, K]) return transform
def get_model(point_cloud, input_label, is_training, cat_num, part_num, \ batch_size, num_point, weight_decay, bn_decay=None): """ ConvNet baseline, input is BxNx3 gray image """ end_points = {} with tf.variable_scope('transform_net1') as sc: K = 3 transform = get_transform(point_cloud, is_training, bn_decay, K=3) point_cloud_transformed = tf.matmul(point_cloud, transform) input_image = tf.expand_dims(point_cloud_transformed, -1) out1 = tf_util.conv2d(input_image, 64, [1, K], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay) out2 = tf_util.conv2d(out1, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay) out3 = tf_util.conv2d(out2, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay) with tf.variable_scope('transform_net2') as sc: K = 128 transform = get_transform_K(out3, is_training, bn_decay, K) end_points['transform'] = transform squeezed_out3 = tf.reshape(out3, [batch_size, num_point, 128]) net_transformed = tf.matmul(squeezed_out3, transform) net_transformed = tf.expand_dims(net_transformed, [2]) out4 = tf_util.conv2d(net_transformed, 512, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay) out5 = tf_util.conv2d(out4, 2048, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay) out_max = tf_util.max_pool2d(out5, [num_point, 1], padding='VALID', scope='maxpool') # classification network net = tf.reshape(out_max, [batch_size, -1]) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='cla/fc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='cla/fc2', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='cla/dp1') net = tf_util.fully_connected(net, cat_num, activation_fn=None, scope='cla/fc3') # segmentation network one_hot_label_expand = tf.reshape(input_label, [batch_size, 1, 1, cat_num]) out_max = tf.concat(axis=3, values=[out_max, one_hot_label_expand]) expand = tf.tile(out_max, [1, num_point, 1, 1]) concat = tf.concat(axis=3, values=[expand, out1, out2, out3, out4, out5]) net2 = tf_util.conv2d(concat, 256, [1, 1], padding='VALID', stride=[1, 1], bn_decay=bn_decay, bn=True, is_training=is_training, scope='seg/conv1', weight_decay=weight_decay) net2 = tf_util.dropout(net2, keep_prob=0.8, is_training=is_training, scope='seg/dp1') net2 = tf_util.conv2d(net2, 256, [1, 1], padding='VALID', stride=[1, 1], bn_decay=bn_decay, bn=True, is_training=is_training, scope='seg/conv2', weight_decay=weight_decay) net2 = tf_util.dropout(net2, keep_prob=0.8, is_training=is_training, scope='seg/dp2') net2 = tf_util.conv2d(net2, 128, [1, 1], padding='VALID', stride=[1, 1], bn_decay=bn_decay, bn=True, is_training=is_training, scope='seg/conv3', weight_decay=weight_decay) net2 = tf_util.conv2d(net2, part_num, [1, 1], padding='VALID', stride=[1, 1], activation_fn=None, bn=False, scope='seg/conv4', weight_decay=weight_decay) net2 = tf.reshape(net2, [batch_size, num_point, part_num]) return net, net2, end_points
def feature_transform_net(inputs, is_training, bn_decay=None, K=64): """ Feature Transform Net, input is BxNx1xK Return: Transformation matrix of size KxK """ # BxNx1X64 net = tf_util.conv2d(inputs, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) # BxNx1X128 net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay) # BxNx1X1024 net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay) # BxNX1024 net = tf.squeeze(net, axis=2) # BX1024 net = tf.reduce_max(net, axis=1) # BX512 net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) # BX256 net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_feat') as sc: weights = tf.get_variable('weights', [256, K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases += tf.constant(np.eye(K).flatten(), dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) transform = tf.reshape(transform, [-1, K, K]) return transform
def input_transform_net(point_cloud, is_training, bn_decay=None, K=3): """ Input (XYZ) Transform Net, input is BxNx3 gray image Return: Transformation matrix of size 3xK """ # BxNx3X1 input_image = tf.expand_dims(point_cloud, -1) # BxNx1X64 net = tf_util.conv2d(input_image, 64, [1, K], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv1', bn_decay=bn_decay) # BxNx1X128 net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv2', bn_decay=bn_decay) # BxNx1X1024 net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='tconv3', bn_decay=bn_decay) # BxNX1024 net = tf.squeeze(net, axis=2) # Bx1024 net = tf.reduce_max(net, axis=1) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='tfc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='tfc2', bn_decay=bn_decay) with tf.variable_scope('transform_XYZ') as sc: weights = tf.get_variable('weights', [256, K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases = tf.get_variable('biases', [K * K], initializer=tf.constant_initializer(0.0), dtype=tf.float32) biases += tf.constant(np.eye(K).flatten(), dtype=tf.float32) transform = tf.matmul(net, weights) transform = tf.nn.bias_add(transform, biases) transform = tf.reshape(transform, [-1, K, K]) return transform
def get_model(point_cloud, is_training, bn_decay=None): """ ConvNet baseline, input is BxNx3 gray image """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value input_image = tf.expand_dims(point_cloud, -1) # CONV net = tf_util.conv2d(input_image, 64, [1, 9], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay) net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay) points_feat1 = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay) # MAX pc_feat1 = tf_util.max_pool2d(points_feat1, [num_point, 1], padding='VALID', scope='maxpool1') # FC pc_feat1 = tf.reshape(pc_feat1, [batch_size, -1]) pc_feat1 = tf_util.fully_connected(pc_feat1, 256, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) pc_feat1 = tf_util.fully_connected(pc_feat1, 128, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay) print(pc_feat1) # CONCAT pc_feat1_expand = tf.tile(tf.reshape(pc_feat1, [batch_size, 1, 1, -1]), [1, num_point, 1, 1]) points_feat1_concat = tf.concat(axis=3, values=[points_feat1, pc_feat1_expand]) # CONV net = tf_util.conv2d(points_feat1_concat, 512, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv6') net = tf_util.conv2d(net, 256, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv7') net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.conv2d(net, 13, [1, 1], padding='VALID', stride=[1, 1], activation_fn=None, scope='conv8') net = tf.squeeze(net, [2]) return net
def get_model(point_cloud, is_training, bn_decay=None, K=3): """ Classification PointNet, input is BxNx3, output Bx40 """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value end_points = {} input_image = tf.expand_dims(point_cloud, -1) # Point functions (MLP implemented as conv2d) net = tf_util.conv2d(input_image, 64, [1, K], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv1', bn_decay=bn_decay) net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv2', bn_decay=bn_decay) net = tf_util.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv3', bn_decay=bn_decay) net = tf_util.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv4', bn_decay=bn_decay) net = tf_util.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='conv5', bn_decay=bn_decay) # Symmetric function: max pooling net = tf_util.max_pool2d(net, [num_point, 1], padding='VALID', scope='maxpool') # MLP on global point cloud vector net = tf.reshape(net, [batch_size, -1]) net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay) net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training, scope='dp1') net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3') return net, end_points