def get_bubble(deg): x = Symbol('x') poly_set = leg.basis_functions(deg=deg) pts = np.r_[-1, 1, chebyshev_points(deg)[1:-1]] A = np.zeros((deg+1, deg+1)) for col, f in enumerate(poly_set): A[:, col] = lambdify(x, poly_set[col], 'numpy')(pts) b = np.zeros(deg+1) nodal_pt_index = -1 if deg % 2 else -deg/2 b[nodal_pt_index] = 1 bubble = np.linalg.solve(A, b) bubble_dof = pts[nodal_pt_index] # Point eval here # Return coefs of bubble w.r.t legendre and the node return bubble, bubble_dof
# 0 boundary values x = Symbol('x') poly_set = leg.basis_functions(deg=deg) # f = a*l0 + b*l1 + c*l2 # Suppose we reure that the L-2 norm is 1 # [f(-1)=0] = [l0(-1), l1(-1), l2(-1) ] [a] # [f(1)=0 ] = [l0(1), l1(1), l2(1) ] [b] # [norm=1 ] = [(l0, l0), ... [c] # suppose instead nodality at 0 # [f(0) = 1] = ..... A = np.zeros((deg+1, deg+1)) pts = np.r_[-1, 1, chebyshev_points(deg)[1:-1]] for col, f in enumerate(poly_set): A[:, col] = lambdify(x, poly_set[col], 'numpy')(pts) # norm # A[2] = [float(integrate(f*f, (x, -1, 1))) for f in poly_set] b = np.zeros(deg+1) b[-1 if deg % 2 else -deg/2] = 1 coefs = np.linalg.solve(A, b) f = sum(c*f for c, f in zip(coefs, poly_set)) #plot(f, (x, -1, 1))
def solve(n_cells, degree=3, with_plot=False): # Problem w = 3 * np.pi x = Symbol("x") u = sin(w * x) f = -u.diff(x, 2) # As Expr u = Expression(u) f = Expression(f) # Space # element = HermiteElement(degree) poly_set = leg.basis_functions(degree) dof_set = chebyshev_points(degree) element = LagrangeElement(poly_set, dof_set) mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells) V = FunctionSpace(mesh, element) bc = DirichletBC(V, u) # Need mass matrix to intefrate the rhs M = assemble_matrix(V, "mass", get_geom_tensor=None, timer=0) # NOTE We cannot you apply the alpha transform idea because the functions # are mapped with this selective weight on 2nd, 3rd functions. So some rows # of alpha would have to be multiplied by weights which are cell specific. # And then on top of this there would be a dx = J*dy term. Better just to # use the qudrature representations # Mpoly_matrix = leg.mass_matrix(degree) # M_ = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0) # Stiffness matrix for Laplacian A = assemble_matrix(V, "stiffness", get_geom_tensor=None, timer=0) # NOTE the above # Apoly_matrix = leg.stiffness_matrix(degree) # A_ = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0) # Interpolant of source fV = V.interpolate(f) # Integrate in L2 to get the vector b = M.dot(fV.vector) # Apply boundary conditions bc.apply(A, b, True) x = spsolve(A, b) # As function uh = Function(V, x) # This is a (slow) way of plotting the high order if with_plot: fig = plt.figure() ax = fig.gca() uV = V.interpolate(u) for cell in Cells(mesh): a, b = cell.vertices[0, 0], cell.vertices[1, 0] x = np.linspace(a, b, 100) y = uh.eval_cell(x, cell) ax.plot(x, y, color=random.choice(["b", "g", "m", "c"])) y = uV.eval_cell(x, cell) ax.plot(x, y, color="r") y = u.eval_cell(x, cell) ax.plot(x, y, color="k") plt.show() # Error norm in CG high order fine_degree = degree + 3 poly_set = leg.basis_functions(fine_degree) dof_set = chebyshev_points(fine_degree) element = LagrangeElement(poly_set, dof_set) V_fine = FunctionSpace(mesh, element) # Interpolate exact solution to fine u_fine = V_fine.interpolate(u) # Interpolate approx solution fine uh_fine = V_fine.interpolate(uh) # Difference vector e = u_fine.vector - uh_fine.vector # L2 if False: Apoly_matrix = leg.mass_matrix(fine_degree) get_geom_tensor = lambda cell: 1.0 / cell.Jac # Need matrix for integration of H10 norm else: Apoly_matrix = leg.stiffness_matrix(fine_degree) get_geom_tensor = lambda cell: cell.Jac A_fine = assemble_matrix(V_fine, Apoly_matrix, get_geom_tensor, timer=0) # Integrate the error e = sqrt(np.sum(e * A_fine.dot(e))) # Mesh size hmin = mesh.hmin() # Add the cond number kappa = np.linalg.cond(A.toarray()) return hmin, e, kappa, A.shape[0]
def _solve(mode, points, degree, n_cells, u, f): ''' In mode == convergence: Solve -u`` = f with dirichet bcs bdry of (-1, 1) given by exact solution. The Vh space is CG_space of degree elements and n_cells. Return hmin, error for convergence computation. In mode == cond: Just return h and the matrix A. ''' # Element. The polynomial space is spanned by Legendre basis poly_set = leg.basis_functions(degree) dof_set = points(degree) element = LagrangeElement(poly_set, dof_set) # Mesh mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells) # Space V = FunctionSpace(mesh, element) bc = DirichletBC(V, u) # Need mass matrix to intefrate the rhs Mpoly_matrix = leg.mass_matrix(degree) Mget_geom_tensor = lambda cell: 1./cell.Jac M = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0) # Stiffness matrix for Laplacian Apoly_matrix = leg.stiffness_matrix(degree) Aget_geom_tensor = lambda cell: cell.Jac A = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0) # Interpolant of source fV = V.interpolate(f) # Integrate in L2 to get the vector b = M.dot(fV.vector) # Apply boundary conditions bc.apply(A, b, True) x = spsolve(A, b) if mode == 'condition': return mesh.hmin(), A # As function uh = Function(V, x) # Error norm # Higher order DG element fine_degree = degree + 3 poly_set = leg.basis_functions(fine_degree) dof_set = chebyshev_points(fine_degree) element = LagrangeElement(poly_set, dof_set) # THe space V_fine = FunctionSpace(mesh, element, 'L2') # Interpolate exact solution to fine u_fine = V_fine.interpolate(u) # Interpolate approx solution fine uh_fine = V_fine.interpolate(uh) # Difference vector e = u_fine.vector - uh_fine.vector # Need matrix for integration of H10 norm Apoly_matrix = leg.stiffness_matrix(fine_degree) A_fine = assemble_matrix(V_fine, Apoly_matrix, Aget_geom_tensor, timer=1) # Integrate the error e = sqrt(np.sum(e*A_fine.dot(e))) # Mesh size hmin = mesh.hmin() return hmin, e
import sys sys.path.append('../') from mesh import IntervalMesh from cg_space import FunctionSpace from function import Constant, Expression from lagrange_element import LagrangeElement from polynomials import legendre_basis as leg from points import chebyshev_points from sympy import Symbol from scipy.sparse import csr_matrix import numpy as np # Element degree = 2 poly_set = leg.basis_functions(degree) dof_set = chebyshev_points(degree) element = LagrangeElement(poly_set, dof_set) # Mesh n_cells = 2 mesh = IntervalMesh(a=-1, b=4, n_cells=n_cells) # Space V = FunctionSpace(mesh, element) x = Symbol('x') bc = DirichletBC(V, Expression(x)) # Hope that the map is okay. Check if applied correctly # No symmetry A = csr_matrix(np.random.rand(V.dim, V.dim))