Пример #1
0
def test_polar_compare_impl_runtime():
    K = 400
    N = 2048
    num_runs = 10000

    ###
    data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
    data_bits = np.unpackbits(data)

    ###
    polar_data = polar_encode(N, K, data_bits)
    polar_data_repacked = packed_to_unpacked(np.packbits(polar_data))
    polar_data_modulated = qpsk_modulate(polar_data_repacked)
    polar_channel_LLRs = qpsk_demodulate_soft(polar_data_modulated,
                                              2).flatten()

    ###
    st = pc()
    for _ in range(num_runs):
        polar_decode_alternate(N, K, polar_channel_LLRs, use_f_approx=False)
    time_none = (pc() - st) / num_runs

    st = pc()
    for _ in range(num_runs):
        polar_decode_alternate(N, K, polar_channel_LLRs, use_f_approx=True)
    time_f = (pc() - st) / num_runs

    st = pc()
    for _ in range(num_runs):
        polar_decode_ssc(N, K, polar_channel_LLRs)
    time_ssc = (pc() - st) / num_runs

    print(f"Results from timing test, N={N}, K={K}, num_runs={num_runs}")

    print("None                     &  {:.2f} \\\\".format(1000 * time_none))
    print("$F$ approximation        &  {:.2f} \\\\".format(1000 * time_f))
    print("SSC + $F$ approximation  &  {:.2f}".format(1000 * time_ssc))
Пример #2
0
    def decode(self,
               received_samples,
               estimate_esno=None,
               noise_power=None,
               post_not_precombine=False,
               do_downsample=True):
        """
        Decode a WIRT package.

        - received_samples: The samples to decode. The sample rate is assumed to be RF sample rate,
        unless do_downsample is False
        - estimate_esno: If the ESNO is known, specify it here in dB.
        - noise_power: if the ESNO is not known, specify the noise power in dB.
        - post_not_precombine: If the system should combine the LLRs before or after the decoding.
        - do_downsample: Perform downsampling operation.
        """

        if do_downsample:
            filt_delay = np.ceil(wirt.FILTER_LEN /
                                 wirt.SAMP_PER_SYMBOL).astype(np.int)
            samples = downsample(received_samples, wirt.SAMP_PER_SYMBOL,
                                 self.upsamp_filter)[filt_delay:]
        else:
            samples = received_samples

        ###
        # Synchronize based on the Zadoff-Chu sequence
        # The system is estimated to be approximately synchronized so the package begins after
        # the first included sample.
        N_samples_sync = int(wirt.MAXIMUM_SAMPLE_OFFSET * 1.25)
        ZC_indicies = np.arange(0, N_samples_sync, dtype=int)

        # Find the autocorrelation within the indicies from that the location of the ZC sequence.
        autocorrelation_postresamp = np.correlate(samples[ZC_indicies],
                                                  self.zc_sequence,
                                                  mode='valid')
        max_idx_post = np.argmax(np.abs(autocorrelation_postresamp))

        # The samples containing the ZC sequence
        # For an uneven ZC length, the "extra" sample is at the end
        # sequence_start_idx = max_idx_post - wirt.ZC_N // 2
        sequence_end_idx = max_idx_post + wirt.ZC_N

        # Pick out the synchronized samples
        symbol_count = (self.num_samples_per_package -
                        wirt.FILTER_DELAY) // 4 - wirt.ZC_N
        samples_selector = slice(sequence_end_idx,
                                 (sequence_end_idx + symbol_count))
        samples_all = samples[samples_selector]

        # OFDM demodulate
        if estimate_esno is None:
            symbols_all, est_signal_power = self.mod.demodulate(
                samples_all, estimate_signal_power=True)
            symbols_all = symbols_all[:wirt.USED_SIZE // 2].reshape(
                (wirt.NUM_REPETITIONS, -1))

            estimate_esno = est_signal_power - noise_power
        else:
            symbols_all = self.mod.demodulate(
                samples_all,
                estimate_signal_power=False)[:wirt.USED_SIZE // 2].reshape(
                    (wirt.NUM_REPETITIONS, -1))

        if PLOT_CONSTELLATION:
            plt.figure("Constellation plot")
            plt.plot(symbols_all[0].real,
                     symbols_all[0].imag,
                     'bo',
                     label="Received")
            #plt.xlim([-2, 2])
            #plt.ylim([-2, 2])
            plt.legend()

        # QPSK demodulate
        polar_channel_LLRs = qpsk_demodulate_soft(symbols_all, estimate_esno)

        # Polar decode
        if post_not_precombine:
            data_recv_all = np.empty((wirt.NUM_REPETITIONS, wirt.DATA_SIZE))
            for j in range(wirt.NUM_REPETITIONS):
                data_recv_all[j] = polar_decode_ssc(
                    wirt.POLAR_SIZE,
                    wirt.DATA_SIZE,
                    polar_channel_LLRs[j].flatten(),
                    soft_output=True)

            data_recv = np.array(data_recv_all.mean(axis=0) < 0,
                                 dtype=np.uint8)

        else:
            combined_LLR = polar_channel_LLRs.mean(axis=0).flatten()
            data_recv = polar_decode_ssc(wirt.POLAR_SIZE, wirt.DATA_SIZE,
                                         combined_LLR)

        return data_recv
    # Demodulate in a soft manner and combine the LLRs
    LLRs = qpsk_demodulate_soft(symbols_all, ESNO).mean(axis=0)

    symbols_combined_LLR = unpacked_to_packed(qpsk_hard_decision(LLRs))

    # QPSK demodulate and compare
    data_recv = unpacked_to_packed(qpsk_demodulate(symbols_combined))
    # data_recv = symbols_combined_LLR
    data_recv_bits = np.unpackbits(data_recv)

    # dr = data_recv[::2]
    # BERs_raw[run_i] = (np.unpackbits(dr) != np.unpackbits(data_orig_uint[run_i])).mean()
    # BLERs_raw[run_i] = (dr != data_orig_uint[run_i]).mean()

    # dr_ecc = conv_decode(data_recv[::2], data_recv[1::2], 3, 4, 5)
    dr_ecc = polar_decode_ssc(polar_size, num_databits, LLRs.flatten())

    BERs_ecc[run_i] = (dr_ecc != np.unpackbits(data_orig_uint[run_i])).mean()
    BLERs_ecc[run_i] = (np.packbits(dr_ecc) !=
                        data_orig_uint[run_i]).any().astype(np.uint8)

    ###
    # Plotting
    if PLOT_CONSTELLATION and run_i in list(range(10)):
        plt.figure("Constellation plot {}".format(run_i))
        plt.plot(symbols_single.real,
                 symbols_single.imag,
                 'ro',
                 label="No power combining")
        plt.plot(symbols_combined.real,
                 symbols_combined.imag,
Пример #4
0
def test_polar_compare_impl(filename='output/polar_compare_impl.npz'):
    print("Polar with and without approximation.")
    num_runs_max = 20000
    num_frame_errors = 150
    ESNOs = np.arange(-12, -9, 0.25)

    total_bits = 14400
    K = 400
    N = 2048
    reps = total_bits // N

    run_types = ["None", "F approx", "SSC + F_approx"]

    results_BER = np.empty((len(run_types), len(ESNOs)))
    results_BLER = np.empty((len(run_types), len(ESNOs)))

    for i, esno in enumerate(ESNOs):
        print("ESNO", esno)

        for rt_i, _ in enumerate(run_types):
            total_errors = 0
            total_frame_errors = 0
            total_bits = 0
            total_frames = 0

            for _ in range(num_runs_max):
                ###
                data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
                data_bits = np.unpackbits(data)

                ###
                polar_data = np.tile(polar_encode(N, K, data_bits), reps)
                polar_data_repacked = packed_to_unpacked(
                    np.packbits(polar_data))
                polar_data_modulated = qpsk_modulate(polar_data_repacked)

                ###
                polar_coded = channel_AWGN(polar_data_modulated, esno)

                ######
                polar_reshaped = polar_coded.reshape((reps, -1))
                polar_channel_LLRs = qpsk_demodulate_soft(polar_reshaped, esno)

                #####
                mean_LLRs = polar_channel_LLRs.mean(axis=0).flatten()

                if rt_i == 0:
                    polar_result = polar_decode_alternate(N,
                                                          K,
                                                          mean_LLRs,
                                                          use_f_approx=False)
                elif rt_i == 1:
                    polar_result = polar_decode_alternate(N,
                                                          K,
                                                          mean_LLRs,
                                                          use_f_approx=True)
                elif rt_i == 2:
                    polar_result = polar_decode_ssc(N, K, mean_LLRs)

                ######
                errors = (polar_result != data_bits)

                total_errors += errors.sum()
                total_frame_errors += errors.any()
                total_bits += K
                total_frames += 1

                if total_frame_errors >= num_frame_errors:
                    break
            else:
                print("Timeout at {} dB".format(esno))

            results_BER[rt_i, i] = total_errors / total_bits
            results_BLER[rt_i, i] = total_frame_errors / total_frames

    np.savez(filename,
             N=N,
             K=K,
             repeats=reps,
             ESNOs=ESNOs,
             results_BER=results_BER,
             results_BLER=results_BLER,
             legend=run_types,
             config={
                 'num_runs_max': num_runs_max,
                 'num_frame_errors': num_frame_errors,
                 'total_bits': total_bits
             })
Пример #5
0
def test_polar_soft_combine(filename='output/polar_soft_combine.npz'):
    print("Polar compare post- vs pre-combining.")
    num_runs_max = 50000
    num_frame_errors = 100
    ESNOs = np.arange(-12, -9, 0.25)

    total_bits = 14400
    K = 400
    Ns = np.array([2048, 2048, 4096, 4096])
    repeats = (total_bits / Ns).astype(int)

    results_BER = np.empty((len(repeats), len(ESNOs)))
    results_BLER = np.empty((len(repeats), len(ESNOs)))

    for i, esno in enumerate(ESNOs):
        print("ESNO", esno)

        for n_rep in range(len(repeats)):
            total_errors = 0
            total_frame_errors = 0
            total_bits = 0
            total_frames = 0

            for _ in range(num_runs_max):
                ###
                data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
                data_bits = np.unpackbits(data)

                ###
                polar_data = np.tile(polar_encode(Ns[n_rep], K, data_bits),
                                     repeats[n_rep])
                polar_data_repacked = packed_to_unpacked(
                    np.packbits(polar_data))
                polar_data_modulated = qpsk_modulate(polar_data_repacked)

                ###
                polar_coded = channel_AWGN(polar_data_modulated, esno)

                ######
                polar_reshaped = polar_coded.reshape((repeats[n_rep], -1))
                polar_channel_LLRs = qpsk_demodulate_soft(polar_reshaped, esno)

                #####
                if n_rep % 1 == 0:
                    polar_result = polar_decode_ssc(
                        Ns[n_rep], K,
                        polar_channel_LLRs.mean(axis=0).flatten())

                ######
                else:
                    polar_results_soft_all = np.empty((repeats[n_rep], K))
                    for j in range(len(polar_channel_LLRs)):
                        polar_results_soft_all[j] = polar_decode_ssc(
                            Ns[n_rep],
                            K,
                            polar_channel_LLRs[j],
                            soft_output=True)

                    polar_result = polar_results_soft_all.mean(axis=0)

                ######
                errors = (polar_result != data_bits)

                total_errors += errors.sum()
                total_frame_errors += errors.any()
                total_bits += K
                total_frames += 1

                if total_frame_errors >= num_frame_errors:
                    break
            else:
                print("Timeout at {} dB".format(esno))

            results_BER[n_rep, i] = total_errors / total_bits
            results_BLER[n_rep, i] = total_frame_errors / total_frames

    np.savez(filename,
             N=Ns,
             K=K,
             repeats=repeats,
             ESNOs=ESNOs,
             results_BER=results_BER,
             results_BLER=results_BLER,
             legend=[
                 "Hard combine", "Soft combine", "Hard combine", "Soft combine"
             ],
             config={
                 'num_runs_max': num_runs_max,
                 'num_frame_errors': num_frame_errors,
                 'total_bits': total_bits
             })
Пример #6
0
def test_polar_rate_vs_rep(filename='output/polar_rates_vs_rep.npz'):
    num_runs_max = 50000
    num_frame_errors = 100
    ESNOs = np.arange(-12, -6, 0.25)

    total_bits = 14400
    K = 400
    Ns = 2**(np.arange(9, 14))
    repeats = (total_bits / Ns).astype(int)

    results_BER = np.empty((len(repeats), len(ESNOs)))
    results_BLER = np.empty((len(repeats), len(ESNOs)))

    for i, esno in enumerate(ESNOs):
        print("ESNO", esno)

        for n_rep in range(len(repeats)):
            total_errors = 0
            total_frame_errors = 0
            total_bits = 0
            total_frames = 0

            for _ in range(num_runs_max):
                ###
                data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
                data_bits = np.unpackbits(data)

                ###
                polar_data = np.tile(polar_encode(Ns[n_rep], K, data_bits),
                                     repeats[n_rep])
                polar_data_repacked = packed_to_unpacked(
                    np.packbits(polar_data))
                polar_data_modulated = qpsk_modulate(polar_data_repacked)

                ###
                polar_coded = channel_AWGN(polar_data_modulated, esno)

                ###
                polar_reshaped = polar_coded.reshape((repeats[n_rep], -1))
                polar_channel_LLRs = np.mean(qpsk_demodulate_soft(
                    polar_reshaped, esno),
                                             axis=0)

                polar_result = polar_decode_ssc(Ns[n_rep], K,
                                                polar_channel_LLRs.flatten())

                ###
                errors = (polar_result != data_bits)

                total_errors += errors.sum()
                total_frame_errors += errors.any()
                total_bits += K
                total_frames += 1

                if total_frame_errors >= num_frame_errors:
                    break
            else:
                print("Timeout at {} dB".format(esno))

            results_BER[n_rep, i] = total_errors / total_bits
            results_BLER[n_rep, i] = total_frame_errors / total_frames

    np.savez(filename,
             N=Ns,
             K=K,
             repeats=repeats,
             ESNOs=ESNOs,
             results_BER=results_BER,
             results_BLER=results_BLER,
             legend=[f"N: {Ns[i]}, Rep: {repeats[i]}" for i in range(len(Ns))],
             config={
                 'num_runs_max': num_runs_max,
                 'num_frame_errors': num_frame_errors,
                 'total_bits': total_bits,
             })
Пример #7
0
def test_polar_combining(K=32, repetitions=2, plot=False):
    num_runs = 100
    ESNOs = np.arange(-13, -2, 0.5)

    # First just repeating and combining soft LLRs
    # Then a rate 1/2 code, repeated a number of times
    # Then polar code with the lowest rate possible

    results_uncoded_BER = np.empty((num_runs, len(ESNOs)))
    results_uncoded_BLER = np.empty((num_runs, len(ESNOs)))
    results_rate_half_BER = np.empty((num_runs, len(ESNOs)))
    results_rate_half_BLER = np.empty((num_runs, len(ESNOs)))
    results_rate_min_BER = np.empty((num_runs, len(ESNOs)))
    results_rate_min_BLER = np.empty((num_runs, len(ESNOs)))

    for n_run in range(num_runs):
        if num_runs > 10 and n_run % (num_runs // 10) == 0:
            print(n_run)

        # Generate data
        data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
        data_bits = np.unpackbits(data)

        # Match N
        uncoded_data = np.tile(data_bits, (2 * repetitions))
        polar_rate_half = np.tile(polar_encode(2 * K, K, data_bits),
                                  repetitions)
        polar_rate_min = polar_encode(repetitions * 2 * K, K, data_bits)

        # Pack
        uncoded_repacked = packed_to_unpacked(np.packbits(uncoded_data))
        polar_rate_half_repacked = packed_to_unpacked(
            np.packbits(polar_rate_half))
        polar_rate_min_repacked = packed_to_unpacked(
            np.packbits(polar_rate_min))

        # Modulate
        uncoded_modulated = qpsk_modulate(uncoded_repacked)
        polar_rate_half_modulated = qpsk_modulate(polar_rate_half_repacked)
        polar_rate_min_modulated = qpsk_modulate(polar_rate_min_repacked)

        for i, esno in enumerate(ESNOs):
            # print("{}: esno {}".format(i, esno))

            uncoded_channel = channel_AWGN(uncoded_modulated, esno)
            uncoded_reshaped = uncoded_channel.reshape((-1, K // 2))
            uncoded_channel_LLRs = np.mean(qpsk_demodulate_soft(
                uncoded_reshaped, esno),
                                           axis=0)
            uncoded_bits = np.unpackbits(
                unpacked_to_packed(qpsk_hard_decision(uncoded_channel_LLRs)))
            results_uncoded_BER[n_run, i] = (uncoded_bits != data_bits).mean()
            results_uncoded_BLER[n_run, i] = (uncoded_bits != data_bits).any()

            ###
            polar_rate_half_channel = channel_AWGN(polar_rate_half_modulated,
                                                   esno)
            polar_rate_half_reshaped = polar_rate_half_channel.reshape((-1, K))
            polar_rate_half_channel_LLRs = np.mean(qpsk_demodulate_soft(
                polar_rate_half_reshaped, esno),
                                                   axis=0)

            polar_result_rate_half = polar_decode_ssc(
                2 * K, K, polar_rate_half_channel_LLRs.flatten())
            results_rate_half_BER[n_run, i] = (polar_result_rate_half !=
                                               data_bits).mean()
            results_rate_half_BLER[n_run, i] = (polar_result_rate_half !=
                                                data_bits).any()

            ###
            polar_rate_min_channel = channel_AWGN(polar_rate_min_modulated,
                                                  esno)
            polar_rate_min_demod = qpsk_demodulate_soft(
                polar_rate_min_channel, esno).flatten()
            polar_result_rate_min = polar_decode_ssc(repetitions * 2 * K, K,
                                                     polar_rate_min_demod)
            results_rate_min_BER[n_run, i] = (polar_result_rate_min !=
                                              data_bits).mean()
            results_rate_min_BLER[n_run, i] = (polar_result_rate_min !=
                                               data_bits).any()

    if plot:
        ###
        plt.figure("Polar BER test")
        plt.title(
            f"Comparison of different rate polar codes, QPSK, AWGN channel, K={K}"
        )
        plt.plot(ESNOs,
                 results_uncoded_BER.mean(axis=0),
                 label=f'Repetition code R = 1 / {1/(2*repetitions)}')
        plt.plot(
            ESNOs,
            results_rate_half_BER.mean(axis=0),
            label=
            f'Polar code (SC decoder) R = 1 / {1/2}, repeated = {repetitions}')
        plt.plot(ESNOs,
                 results_rate_min_BER.mean(axis=0),
                 label=f'Polar code (SC decoder) R = 1 / {1/(2*repetitions)}')
        plt.ylabel("BER")
        plt.yscale('log')
        plt.legend()

        ###
        plt.figure("Polar BLER test")
        plt.title(
            f"Comparison of different rate polar codes, QPSK, AWGN channel, K={K}"
        )
        plt.plot(ESNOs,
                 results_uncoded_BLER.mean(axis=0),
                 label=f'Repetition code R = 1 / {1/(2*repetitions)}')
        plt.plot(
            ESNOs,
            results_rate_half_BLER.mean(axis=0),
            label=
            f'Polar code (SC decoder) R = 1 / {1/2}, repeated = {repetitions}')
        plt.plot(ESNOs,
                 results_rate_min_BLER.mean(axis=0),
                 label=f'Polar code (SC decoder) R = 1 / {1/(2*repetitions)}')
        plt.xlabel("ESNO")
        plt.ylabel("BLER")
        plt.yscale('log')
        plt.legend()

        ###
        plt.show()
Пример #8
0
def test_polar_rates(filename='output/polar_various_rates.npz'):
    print("Polar compare performance at different rates")
    num_runs_max = 1000
    num_frame_errors = 100
    ESNOs = np.arange(-11, 3, 0.5)

    rates = 1 / np.array([2, 3, 5, 10, 16, 20.48])
    N = 2**13
    K = (N * rates).astype(int)

    results_BER = np.empty((len(rates), len(ESNOs)))
    results_BLER = np.empty((len(rates), len(ESNOs)))

    for i, esno in enumerate(ESNOs):
        print("ESNO", esno)

        for K_i, cur_K in enumerate(K):
            total_errors = 0
            total_frame_errors = 0
            total_bits = 0
            total_frames = 0

            for _ in range(num_runs_max):
                data_bits = np.random.binomial(1, 0.5, cur_K).astype(np.uint8)

                polar_data = polar_encode(N, cur_K, data_bits)
                polar_data_repacked = packed_to_unpacked(
                    np.packbits(polar_data))
                polar_data_modulated = qpsk_modulate(polar_data_repacked)

                polar_coded = channel_AWGN(polar_data_modulated, esno)

                polar_coded_demod_soft = qpsk_demodulate_soft(
                    polar_coded, esno).flatten()
                polar_result = polar_decode_ssc(N, cur_K,
                                                polar_coded_demod_soft)

                ######
                errors = (polar_result != data_bits)

                total_errors += errors.sum()
                total_frame_errors += errors.any()
                total_bits += cur_K
                total_frames += 1

                if total_frame_errors >= num_frame_errors:
                    break
            else:
                print("Timeout at {} dB".format(esno))

            results_BER[K_i, i] = total_errors / total_bits
            results_BLER[K_i, i] = total_frame_errors / total_frames

    np.savez(filename,
             N=N,
             K=K,
             ESNOs=ESNOs,
             results_BER=results_BER,
             results_BLER=results_BLER,
             legend=[f"Rate: {r}" for r in rates],
             config={
                 'num_runs_max': num_runs_max,
                 'num_frame_errors': num_frame_errors,
                 'total_bits': total_bits,
             })
Пример #9
0
def test_BER(filename='output/BER_compare.npz', enable_conv=False):
    num_runs_max = 20000
    num_frame_errors = 150
    ESNOs = np.arange(-1, 10, 0.25)

    N = 2**13
    K = N // 2

    types = [
        "Uncoded", "Repetition code (Hard)", "Repetition code (Soft)",
        "Polar code"
    ]
    if enable_conv:
        conv_params = (3, 7, 5)
        types += "Convolutional code"

    N_types = len(types)

    results_BER = np.empty((N_types, len(ESNOs)))
    results_BLER = np.empty((N_types, len(ESNOs)))

    if enable_conv:
        conv_params = (3, 7, 5)

    for i, esno in enumerate(ESNOs):
        print("ESNO", esno)

        # A counter for the total number of frame errors, so we can stop when some of the
        # schemes have reached their limit.
        total_frame_errors = np.zeros(N_types, np.int)
        total_bit_errors = np.zeros(N_types, np.int)
        total_frames = np.zeros(N_types, np.int)
        total_bits = np.zeros(N_types, np.int)

        for _ in range(num_runs_max):
            data = np.frombuffer(np.random.bytes(K // 8), dtype=np.uint8)
            data_unpacked = packed_to_unpacked(data)
            data_bits = np.unpackbits(data)

            ###
            if total_frame_errors[0] < num_frame_errors:
                data_modulated = qpsk_modulate(data_unpacked)
                uncoded = channel_AWGN(data_modulated, esno)
                uncoded_bits = np.unpackbits(
                    unpacked_to_packed(qpsk_demodulate(uncoded)))

                total_frame_errors[0] += (uncoded_bits != data_bits).any()
                total_bit_errors[0] += np.count_nonzero(
                    uncoded_bits != data_bits)
                total_frames[0] += 1
                total_bits[0] += K

            ###
            if (total_frame_errors[1] < num_frame_errors) and (
                    total_frame_errors[2] < num_frame_errors):
                rep_modulated = np.tile(data_modulated, (1, 2)).ravel()

                rep_coded = channel_AWGN(rep_modulated, esno)
                rep_coded_reshaped = rep_coded.reshape((-1, len(uncoded)))

                rep_coded_hard = np.array([1, 2], np.uint8) @ (np.stack(
                    (rep_coded_reshaped.real < 0,
                     rep_coded_reshaped.imag < 0)).sum(axis=1) >= 1)
                rep_coded_hard_bits = np.unpackbits(
                    unpacked_to_packed(rep_coded_hard))

                rep_coded_LLRs = np.roll(qpsk_demodulate_soft(
                    rep_coded_reshaped, esno).mean(axis=0),
                                         1,
                                         axis=1)
                rep_coded_soft_bits = np.unpackbits(
                    unpacked_to_packed(qpsk_hard_decision(rep_coded_LLRs)))

                total_frame_errors[1] += (rep_coded_hard_bits !=
                                          data_bits).any()
                total_bit_errors[1] += np.count_nonzero(
                    rep_coded_hard_bits != data_bits)

                total_frame_errors[2] += (rep_coded_soft_bits !=
                                          data_bits).any()
                total_bit_errors[2] += np.count_nonzero(
                    rep_coded_soft_bits != data_bits)

                total_frames[1:3] += 1
                total_bits[1:3] += K

            ###
            if total_frame_errors[3] < num_frame_errors:
                polar_data = polar_encode(N, K, data_bits)
                polar_data_repacked = packed_to_unpacked(
                    np.packbits(polar_data))
                polar_data_modulated = qpsk_modulate(polar_data_repacked)

                polar_coded = channel_AWGN(polar_data_modulated, esno)

                polar_coded_demod_soft = qpsk_demodulate_soft(
                    polar_coded, esno).flatten()
                polar_result = polar_decode_ssc(N, K, polar_coded_demod_soft)

                total_frame_errors[3] += (polar_result != data_bits).any()
                total_bit_errors[3] += np.count_nonzero(
                    polar_result != data_bits)
                total_frames[3] += 1
                total_bits[3] += K

            ###
            if enable_conv and total_frame_errors[4] < num_frame_errors:
                conv_data = conv_encode(data, *conv_params)
                conv_data_modulated = qpsk_modulate(
                    packed_to_unpacked(conv_data))

                conv_coded = channel_AWGN(conv_data_modulated, esno)

                conv_coded_demod = np.frombuffer(unpacked_to_packed(
                    qpsk_demodulate(conv_coded)),
                                                 dtype=np.uint8)
                conv_decoded = conv_decode(conv_coded_demod[::2],
                                           conv_coded_demod[1::2],
                                           *conv_params)

                total_frame_errors[4] += (np.unpackbits(conv_decoded) !=
                                          data_bits).any()
                total_bit_errors[4] += np.count_nonzero(
                    np.unpackbits(conv_decoded) != data_bits)
                total_frames[4] += 1
                total_bits[4] += K

        results_BER[:, i] = total_bit_errors / total_bits
        results_BLER[:, i] = total_frame_errors / total_frames

    qfunc = lambda x: 0.5 * erfc(x / np.sqrt(2))
    expected_uncoded_BER = qfunc(np.sqrt(10**(ESNOs / 10)))

    np.savez(filename,
             N=N,
             K=K,
             ESNOs=ESNOs,
             results_BER=results_BER,
             results_BLER=results_BLER,
             expected_BER_uncoded=expected_uncoded_BER,
             legend=types,
             config={
                 'num_runs_max': num_runs_max,
                 'num_frame_errors': num_frame_errors,
             })
Пример #10
0
            1 - L0
        )  # Likeliky ratio = (prob. bit is zero) / (prob. bit is one)
        LLR0 = np.log(LR0)

        # Demodulation
        #        polar_result_p0 = polar_decode(N, K, L0)
        #        polar_result_llr = polar_decode_llr(N, K, LLR0, use_f_exact=False)
        #        (polar_result_ssc, P, B, B_idx) = polar_decode_debug(N, K, LLR0)
        polar_result_alt = polar_decode_alternate(N,
                                                  K,
                                                  LLR0,
                                                  use_f_approx=False)
        polar_result_alt_approx = polar_decode_alternate(N,
                                                         K,
                                                         LLR0,
                                                         use_f_approx=True)
        polar_result_ssc = polar_decode_ssc(N, K, LLR0)
        # polar_result_ssc_soft = polar_decode_ssc(N, K, LLR0, soft_output=True)

        # impl_identical[i] = (polar_result_ssc == (polar_result_ssc_soft < 0).astype(np.uint8)).all()
        impl_identical[i] = ((polar_result_ssc == polar_result_alt).all()
                             and (polar_result_ssc
                                  == polar_result_alt_approx).all())

        success_demod[i] = np.all(polar_result_ssc == u)

        if num_runs > 10 and i % (num_runs // 10) == 0:
            print(i, end=', ')

    print("Total time: {} s".format(pf() - st))