class tracking(object): def __init__(self,serialPort): self.fastrak = Fastrak(logFile='rawlog.raw',serialPort=fastrakPort,fixedPoints=[probeTipOffset], sensor=fastrakSensor) self.fastrak.setup(reset=False) self.fastrak.setContinuous() def getFrame(self): a = self.fastrak.readData() return a
class tracking(object): def __init__(self, serialPort): self.fastrak = Fastrak(logFile='rawlog.raw', serialPort=fastrakPort, fixedPoints=[probeTipOffset], sensor=fastrakSensor) self.fastrak.setup(reset=False) self.fastrak.setContinuous() def getFrame(self): a = self.fastrak.readData() return a
class tracking(object): def __init__(self,serialPort): self.fastrak = Fastrak(logFile='rawlog.raw',serialPort=fastrakPort,fixedPoints=[printHeadOffsets,printHeadOffsets2],vectors=[]) self.fastrak.setup(reset=True) self.fastrak.startContinuous() def getFrame(self): a = self.fastrak.readData() return a def getPosition(self): #This will just take the position x,y co-ordinates of the tracker, ignore the z and estimate the heading of the projection a = self.getFrame() if a is None: return None headPosition2 = a[3] headPosition = a[2] orientation = a[1] retVal = [(headPosition[1]*(-3)+xBias,headPosition[2]*3+yBias,),(headPosition2[1]*(-3)+xBias,headPosition2[2]*3+yBias,)] #print retVal return retVal
# This file will load hemishpere.raw and process it using the radius and output testQuat.raw, plot it in matlab to see if it makes sense. from polhemus import Quaternion, Fastrak import numpy as np b = open('quatOut.raw','w') tip = np.array(( (-45.5676,),(-0.15494,),(-13.736,), )) #a = Fastrak(logFile='hemishpere.raw',serialPort=None,fixedPoints=[tip]) a = Fastrak(logFile='rawlog.raw',serialPort='/dev/ttyUSB0',fixedPoints=[tip]) a.setup(reset=False) a.setContinuous() while True: p = a.readData() # This guy prints the sensor xyz and quaternion #to = ' '.join(j.__str__() for j in p[0])+' '+' '.join(j.__str__() for j in p[1])+'\n' # This guy prints the quaterion calculated position of the tip to = ' '.join(j.__str__() for j in p[2])+'\n' print to #b.write(to)
# This file will load hemishpere.raw and process it using the radius and output testQuat.raw, plot it in matlab to see if it makes sense. from polhemus import Quaternion, Fastrak import numpy as np b = open('quatOut.raw', 'w') tip = np.array(( (-45.5676, ), (-0.15494, ), (-13.736, ), )) #a = Fastrak(logFile='hemishpere.raw',serialPort=None,fixedPoints=[tip]) a = Fastrak(logFile='rawlog.raw', serialPort='/dev/ttyUSB0', fixedPoints=[tip]) a.setup(reset=False) a.setContinuous() while True: p = a.readData() # This guy prints the sensor xyz and quaternion #to = ' '.join(j.__str__() for j in p[0])+' '+' '.join(j.__str__() for j in p[1])+'\n' # This guy prints the quaterion calculated position of the tip to = ' '.join(j.__str__() for j in p[2]) + '\n' print to #b.write(to)
# This file will load hemishpere.raw and process it using the radius and output testQuat.raw, plot it in matlab to see if it makes sense. from polhemus import Quaternion, Fastrak import numpy as np b = open("testQuaternionOutput.raw", "w") tip = np.array(((-1.7940,), (-0.0061,), (-0.5408,))) # a = Fastrak(logFile='hemishpere.raw',serialPort=None,fixedPoints=[tip]) a = Fastrak(logFile="plane.raw", serialPort="/dev/ttyUSB0", fixedPoints=[tip]) a.setup(reset=True) a.setContinuous() while True: p = a.readData() to = " ".join(j.__str__() for j in p[2]) + "\n" # print to b.write(to)