default=1 ) args = parser.parse_args() # Polyaxon tracking.init() logger.info('Loading data...') (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=args.max_features, skip_top=args.skip_top) logger.info('train sequences %s', len(x_train)) logger.info('test sequences %s', len(x_test)) # Polyaxon tracking.log_data_ref(content=x_train, name='x_train') tracking.log_data_ref(content=y_train, name='y_train') tracking.log_data_ref(content=x_test, name='x_test') tracking.log_data_ref(content=y_test, name='y_test') logger.info('Transforming data...') x_train, y_train, x_test, y_test = transform_data(x_train, y_train, x_test, y_test, args.maxlen) logger.info('Training...') score, accuracy = train(max_features=args.max_features, maxlen=args.maxlen, epochs=args.epochs,
type=int, default=1 ) args = parser.parse_args() # Polyaxon tracking.init() logger.info('Downloading data ...') mnist = mx.test_utils.get_mnist() train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], args.batch_size, shuffle=True) val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], args.batch_size) # Polyaxon tracking.log_data_ref(content=mnist['train_data'], name='x_train') tracking.log_data_ref(content=mnist['train_label'], name='y_train') tracking.log_data_ref(content=mnist['test_data'], name='x_test') tracking.log_data_ref(content=mnist['test_label'], name='y_test') context = mx.gpu if os.environ.get('NVIDIA_VISIBLE_DEVICES') else mx.cpu metrics = model(context=context, train_iter=train_iter, val_iter=val_iter, conv1_kernel=args.conv1_kernel, conv1_filters=args.conv1_filters, conv1_activation=args.conv1_activation, conv2_kernel=args.conv1_kernel, conv2_filters=args.conv1_filters, conv2_activation=args.conv1_activation,