Пример #1
0
def handle_iteration(
    client: RunClient,
    iteration: int = None,
    suggestions: List[Dict] = None,
    summary: Dict = None,
    name: str = None,
):
    summary = summary or {}
    summary.update({
        "iteration": iteration,
        "suggestions": [sanitize_dict(s) for s in suggestions],
    })

    def handler():
        if suggestions:
            artifact_run = V1RunArtifact(
                name=name or "out-iteration-{}".format(iteration),
                kind=V1ArtifactKind.ITERATION,
                summary=summary,
                is_input=False,
            )
            client.log_artifact_lineage(artifact_run)
            Printer.print_success("Tuner generated new suggestions.")
        else:
            client.log_succeeded(message="Iterative operation has succeeded")
            Printer.print_success("Iterative optimization succeeded")

    try:
        handler()
    except Exception as e:
        exp = "Polyaxon tuner failed fetching iteration definition: {}\n{}".format(
            repr(e), traceback.format_exc())
        client.log_failed(message="PolyaxonTunerFailed", traceback=exp)
        logger.warning(e)
Пример #2
0
    def handler():
        runs = (
            client.list(
                query=search.query,
                sort=search.sort,
                limit=search.limit,
                offset=search.offset,
            ).results
            or []
        )
        configs = []
        metrics = []
        run_uuids = []
        for run in runs:
            if optimization_metric in run.outputs:
                run_uuids.append(run.uuid)
                configs.append(run.inputs)
                metrics.append(run.outputs[optimization_metric])

        if configs or metrics or run_uuids:
            artifact_run = V1RunArtifact(
                name=name or "in-iteration-{}".format(iteration),
                kind=V1ArtifactKind.ITERATION,
                summary={
                    "iteration": iteration,
                    "configs": [sanitize_dict(s) for s in configs],
                    "metrics": [sanitize_np_types(s) for s in metrics],
                    "uuid": run_uuids,
                },
                is_input=True,
            )
            client.log_artifact_lineage(artifact_run)

        return run_uuids, configs, metrics
Пример #3
0
def handle_iteration(
    client: RunClient,
    suggestions: List[Dict] = None,
):
    if not suggestions:
        logger.warning("No new suggestions were created")
        return
    try:
        logger.info("Generated new {} suggestions".format(len(suggestions)))
        client.log_outputs(suggestions=[sanitize_dict(s) for s in suggestions],
                           async_req=False)
    except Exception as e:
        exp = "Polyaxon tuner failed logging iteration definition: {}\n{}".format(
            repr(e), traceback.format_exc())
        client.log_failed(reason="PolyaxonTunerIteration", message=exp)
        logger.warning(e)
Пример #4
0
def log_classifier(classifier, X_test, y_test, nrows=1000, run=None):
    assert is_classifier(
        classifier), "classifier should be sklearn classifier."

    run = tracking.get_or_create_run(run)

    run.log_inputs(**sanitize_dict(classifier.get_params()))

    _log_test_preds_proba(run, classifier, X_test, nrows=nrows)

    y_pred = classifier.predict(X_test)

    results = {}
    for metric_name, values in zip(
        ["precision", "recall", "fbeta_score", "support"],
            precision_recall_fscore_support(y_test, y_pred),
    ):
        for i, value in enumerate(values):
            results["{}_class_{}_test".format(metric_name, i)] = value
    results["accuracy"] = accuracy_score(y_test, y_pred)
    results["f1"] = f1_score(y_pred, y_pred, average="weighted")
    run.log_metrics(**results)
    _log_test_predictions(run, y_test, y_pred=y_pred, nrows=nrows)