Пример #1
0
def train(
    population: Population,
    games: list,
    iterations: int,
    debug: bool = False,
    duration: int = 0,
    unused_cpu: int = 0,
):
    """Train the population on the requested number of iterations."""
    from environment.env_training import TrainingEnv

    population.log("\n===> TRAINING <===\n")

    game_config = deepcopy(population.config)
    if duration > 0: game_config.game.duration = duration

    trainer = TrainingEnv(
        unused_cpu=unused_cpu,  # Use two cores less to keep laptop usable
        game_config=game_config,
        games=games,
    )
    trainer.evaluate_and_evolve(
        pop=population,
        n=iterations,
        parallel=not debug,
        save_interval=1 if debug else 10,
    )
Пример #2
0
def blueprint(
    population: Population,
    games: list,
    debug: bool = False,
    duration: int = 0,
    unused_cpu: int = 0,
):
    """Create a blueprint evaluation for the given population on the first 5 games."""
    from environment.env_visualizing import VisualizingEnv

    population.log("\n===> CREATING BLUEPRINTS <===\n")
    population.log(f"Creating blueprints for games: {games}")

    game_config = deepcopy(population.config)
    if duration > 0: game_config.game.duration = duration

    visualizer = VisualizingEnv(
        game_config=game_config,
        games=games,
        unused_cpu=unused_cpu,
    )
    visualizer.blueprint_genomes(
        pop=population,
        parallel=not debug,
    )
Пример #3
0
def trace_most_fit(
    population: Population,
    genome: Genome,
    games: list,
    debug: bool = False,
    duration: int = 0,
    unused_cpu: int = 0,
):
    """Create a trace evaluation for the given genome on the provided games."""
    from environment.env_visualizing import VisualizingEnv

    game_config = deepcopy(population.config)
    if duration > 0: game_config.game.duration = duration

    population.log("\n===> CREATING GENOME TRACE <===\n")
    population.log(f"Creating traces for games: {games}")

    visualizer = VisualizingEnv(
        game_config=game_config,
        games=games,
        unused_cpu=unused_cpu,
    )
    for g in games:  # TODO: Bug in warm-up of network if multiple games evaluated
        visualizer.set_games([g])
        visualizer.trace_genomes(
            pop=population,
            given_genome=genome,
            parallel=not debug,
        )
Пример #4
0
def evaluate_population(pop: Population, cfg: Config, cpu: int, experiment_id: int):
    """Evaluate the given population."""
    pop.log(f"{pop.name} - Evaluating the population...")
    _, game_ids_eval = get_game_ids(experiment_id=experiment_id)
    multi_env = get_multi_env(pop=pop, game_config=cfg)
    multi_env.set_games(game_ids_eval, noise=False)
    pool = mp.Pool(mp.cpu_count() - cpu)
    manager = mp.Manager()
    return_dict = manager.dict()
    pbar = tqdm(total=len(pop.population), desc="Evaluating")
    
    def update(*_):
        pbar.update()
    
    for genome_id, genome in pop.population.items():
        pool.apply_async(func=multi_env.eval_genome, args=((genome_id, genome), return_dict), callback=update)
    pool.close()  # Close the pool
    pool.join()  # Postpone continuation until everything is finished
    pbar.close()
    
    # Calculate the fitness from the given return_dict
    pop.log(f"{pop.name} - Calculating fitness scores...")
    fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
    )
    for i, genome in pop.population.items():
        genome.fitness = fitness[i]
    
    # Get the fittest genome
    best = None
    for g in pop.population.values():
        if best is None or g.fitness > best.fitness: best = g
    pop.best_genome = best
    
    # Save the results
    pop.save()
    
    # Visualize most fit genome
    visualize_genome(
            debug=True,
            genome=best,
            population=pop,
    )
    
    # Trace the most fit genome
    trace_most_fit(
            debug=False,
            games=game_ids_eval,
            genome=best,
            population=pop,
            unused_cpu=cpu,
    )
Пример #5
0
def visualize_best_genome(pop: Population):
    """Visualize the population's fittest genome."""
    pop.log(
        f"Most fit genome: {pop.best_genome.key} with fitness: {round(pop.best_genome.fitness, 3)}"
    )
    name = f"genome_{pop.best_genome.key}"
    sf = get_subfolder(f'population/storage/{pop.folder_name}/{pop}/',
                       'images')
    sf = get_subfolder(sf, f'gen{pop.generation:05d}')
    draw_net(config=pop.config.genome,
             genome=pop.best_genome,
             debug=True,
             filename=f'{sf}{name}',
             view=False)
Пример #6
0
    def evaluate_same_games_and_evolve(
        self,
        games: list,
        pop: Population,
        n: int = 1,
        parallel=True,
        save_interval: int = 1,
    ):
        """
        Evaluate the population on the same games.
        
        :param games: List of games used for training
        :param pop: Population object
        :param n: Number of generations
        :param parallel: Parallel the code (disable parallelization for debugging purposes)
        :param save_interval: Indicates how often a population gets saved
        """
        multi_env = get_multi_env(pop=pop, game_config=self.game_config)
        msg = f"Repetitive evaluating games: {games}"
        pop.log(msg, print_result=False)
        multi_env.set_games(games)

        # Iterate and evaluate over the games
        saved = True
        for iteration in range(n):
            single_evaluation(
                multi_env=multi_env,
                parallel=parallel,
                pop=pop,
                unused_cpu=self.unused_cpu,
            )

            # Save the population
            if (iteration + 1) % save_interval == 0:
                pop.save()
                saved = True
            else:
                saved = False

        # Make sure that last iterations saves
        if not saved: pop.save()
Пример #7
0
def trace(
    population: Population,
    games: list,
    debug: bool = False,
    duration: int = 0,
    unused_cpu: int = 0,
):
    """Create a trace evaluation for the given population on the provided games."""
    from environment.env_visualizing import VisualizingEnv

    population.log("\n===> CREATING TRACES <===\n")
    population.log(f"Creating traces for games: {games}")

    game_config = deepcopy(population.config)
    if duration > 0: game_config.game.duration = duration

    visualizer = VisualizingEnv(
        game_config=game_config,
        games=games,
        unused_cpu=unused_cpu,
    )
    visualizer.trace_genomes(pop=population, parallel=not debug)
Пример #8
0
def evaluate(
    population: Population,
    games: list,
    genomes: list = None,
    debug: bool = False,
    duration: int = 0,
    overwrite: bool = False,
    unused_cpu: int = 0,
):
    """Evaluate the given population on the evaluation game-set."""
    from environment.env_evaluation import EvaluationEnv

    population.log("\n===> EVALUATING <===\n")

    game_config = deepcopy(population.config)
    if duration > 0: game_config.game.duration = duration

    evaluator = EvaluationEnv(
        game_config=game_config,
        games=games,
        unused_cpu=unused_cpu,
    )
    if genomes is None:
        genomes = sorted(
            [g for g in population.population.values()],
            key=lambda x: x.fitness if x.fitness else 0,
            reverse=True,
        )[:max(
            int(population.config.population.parent_selection *
                len(population.population)), 1)]
    evaluator.evaluate_genome_list(
        genome_list=genomes,  # Evaluate the ten best performing genomes
        pop=population,
        parallel=not debug,
        overwrite=overwrite,
    )
Пример #9
0
def visualize_score(pop: Population, pop_cache: Population, genome: Genome, d: int, range_width: int):
    """Visualize the score of the evaluated population."""
    pop_cache.log(f"{pop_cache.name} - Fetching fitness scores...")
    dim = (2 * range_width + 1)
    pbar = tqdm(range((dim ** 2) * 3), desc="Fetching fitness scores")
    genome_key = 0
    
    # Fetching scores of reset-mutations
    reset_scores = np.zeros((dim, dim))
    for a in range(dim):
        for b in range(dim):
            reset_scores[a, b] = pop_cache.population[genome_key].fitness
            genome_key += 1
            pbar.update()
    
    # Fetching scores of update-mutations
    update_scores = np.zeros((dim, dim))
    for a in range(dim):
        for b in range(dim):
            update_scores[a, b] = pop_cache.population[genome_key].fitness
            genome_key += 1
            pbar.update()
    
    # Fetching scores of candidate-mutations
    candidate_scores = np.zeros((dim, dim))
    for a in range(dim):
        for b in range(dim):
            candidate_scores[a, b] = pop_cache.population[genome_key].fitness
            genome_key += 1
            pbar.update()
    pbar.close()
    
    # Visualize the result
    pop_cache.log(f"{pop_cache.name} - Visualizing the result...")
    
    # GRU-node needed for labels
    genome.update_rnn_nodes(config=pop.config.genome)
    gru_node = None
    for node in genome.nodes.values():
        if type(node) == GruNodeGene:
            gru_node = node
    
    # Create the points and retrieve data for the plot
    points = [[x, y] for x in range(dim) for y in range(dim)]
    points_normalized = [[(p1 + -range_width) / d, (p2 + -range_width) / d] for p1, p2 in points]
    values_reset = [reset_scores[p[0], p[1]] for p in points]
    values_update = [update_scores[p[0], p[1]] for p in points]
    values_candidate = [candidate_scores[p[0], p[1]] for p in points]
    
    # K-nearest neighbours with hops of 0.01 is performed
    grid_x, grid_y = np.mgrid[-range_width / d:range_width / d:0.01, -range_width / d:range_width / d:0.01]
    
    # Perform k-NN
    data_reset = griddata(points_normalized, values_reset, (grid_x, grid_y), method='nearest')
    data_update = griddata(points_normalized, values_update, (grid_x, grid_y), method='nearest')
    data_candidate = griddata(points_normalized, values_candidate, (grid_x, grid_y), method='nearest')
    
    # Create the plots
    plt.figure(figsize=(15, 5))
    plt.subplot(131)
    plt.imshow(data_reset.T,
               vmin=0,
               vmax=1,
               extent=(-range_width / d, range_width / d, -range_width / d, range_width / d),
               origin='lower')
    plt.title('Reset-gate mutation')
    plt.xlabel(r'$\Delta W_{hr}$' + f' (init={round(gru_node.weight_hh[0, 0], 3)})')
    plt.ylabel(r'$\Delta W_{xr}$' + f' (init={round(gru_node.weight_xh[0, 0], 3)})')
    plt.subplot(132)
    plt.imshow(data_update.T,
               vmin=0,
               vmax=1,
               extent=(-range_width / d, range_width / d, -range_width / d, range_width / d),
               origin='lower')
    plt.title('Update-gate mutation')
    plt.xlabel(r'$\Delta W_{hz}$' + f' (init={round(gru_node.weight_hh[1, 0], 3)})')
    plt.ylabel(r'$\Delta W_{xz}$' + f' (init={round(gru_node.weight_xh[1, 0], 3)})')
    plt.subplot(133)
    plt.imshow(data_candidate.T,
               vmin=0,
               vmax=1,
               extent=(-range_width / d, range_width / d, -range_width / d, range_width / d),
               origin='lower')
    plt.title('Candidate-state mutation')
    plt.xlabel(r'$\Delta W_{hh}$' + f' (init={round(gru_node.weight_hh[2, 0], 3)})')
    plt.ylabel(r'$\Delta W_{xh}$' + f' (init={round(gru_node.weight_xh[2, 0], 3)})')
    
    # Store the plot
    plt.tight_layout()
    path = f"population{'_backup' if pop.use_backup else ''}/storage/{pop.folder_name}/{pop}/"
    path = get_subfolder(path, 'images')
    path = get_subfolder(path, 'gru_analysis')
    plt.savefig(f"{path}{genome.key}.png")
    plt.savefig(f"{path}{genome.key}.eps", format="eps")
    plt.close()
    
    # Create overview
    pop_cache.log("Overview of results:")
    log = dict()
    
    # Overview: reset-mutation
    max_index_reset, max_value_reset, min_index_reset, min_value_reset = None, 0, None, 1
    for index, x in np.ndenumerate(reset_scores):
        if x < min_value_reset: min_index_reset, min_value_reset = index, x
        if x > max_value_reset: max_index_reset, max_value_reset = index, x
    pop_cache.log(f"\tReset-gate mutation:")
    pop_cache.log(f"\t > Maximum fitness: {round(max_value_reset, 2)} for index {max_index_reset!r}")
    pop_cache.log(f"\t > Average fitness: {round(np.average(reset_scores), 2)}")
    pop_cache.log(f"\t > Minimum fitness: {round(min_value_reset, 2)} for index {min_index_reset!r}")
    log['Reset-gate maximum fitness'] = f"{round(max_value_reset, 2)} for index {max_index_reset!r}"
    log['Reset-gate average fitness'] = f"{round(np.average(reset_scores), 2)}"
    log['Reset-gate minimum fitness'] = f"{round(min_value_reset, 2)} for index {min_index_reset!r}"
    
    # Overview: update-mutation
    max_index_update, max_value_update, min_index_update, min_value_update = None, 0, None, 1
    for index, x in np.ndenumerate(update_scores):
        if x < min_value_update: min_index_update, min_value_update = index, x
        if x > max_value_update: max_index_update, max_value_update = index, x
    pop_cache.log(f"\tUpdate-gate mutation:")
    pop_cache.log(f"\t > Maximum fitness: {round(max_value_update, 2)} for index {max_index_update!r}")
    pop_cache.log(f"\t > Average fitness: {round(np.average(update_scores), 2)}")
    pop_cache.log(f"\t > Minimum fitness: {round(min_value_update, 2)} for index {min_index_update!r}")
    log['Update-gate maximum fitness'] = f"{round(max_value_update, 2)} for index {max_index_update!r}"
    log['Update-gate average fitness'] = f"{round(np.average(update_scores), 2)}"
    log['Update-gate minimum fitness'] = f"{round(min_value_update, 2)} for index {min_index_update!r}"
    
    # Overview: candidate-mutation
    max_index_candidate, max_value_candidate, min_index_candidate, min_value_candidate = None, 0, None, 1
    for index, x in np.ndenumerate(candidate_scores):
        if x < min_value_candidate: min_index_candidate, min_value_candidate = index, x
        if x > max_value_candidate: max_index_candidate, max_value_candidate = index, x
    pop_cache.log(f"\tCandidate-state mutation:")
    pop_cache.log(f"\t > Maximum fitness: {round(max_value_candidate, 2)} for index {max_index_candidate!r}")
    pop_cache.log(f"\t > Average fitness: {round(np.average(candidate_scores), 2)}")
    pop_cache.log(f"\t > Minimum fitness: {round(min_value_candidate, 2)} for index {min_index_candidate!r}")
    log['Candidate-state maximum fitness'] = f"{round(max_value_candidate, 2)} for index {max_index_candidate!r}"
    log['Candidate-state average fitness'] = f"{round(np.average(candidate_scores), 2)}"
    log['Candidate-state minimum fitness'] = f"{round(min_value_candidate, 2)} for index {min_index_candidate!r}"
    update_dict(f'{path}{genome.key}.txt', log)
Пример #10
0
        if args.genome:
            visualize_genome(
                debug=True,
                genome=chosen_genome if chosen_genome else pop.best_genome,
                population=pop,
            )

        if args.gru_analysis:
            gru_analysis(
                experiment_id=args.experiment,
                genome=chosen_genome,
                population=pop,
                unused_cpu=args.unused_cpu,
            )

        if args.live:
            live(
                debug=args.debug,
                game_id=game_ids_eval[0],
                # game_id=30001,
                duration=args.duration,
                genome=chosen_genome if chosen_genome else pop.best_genome,
                population=pop,
                speedup=4,
            )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('main.py')  # Close all the terminated files
Пример #11
0
def train(
    population: Population,
    game_config: Config,
    games: list,
    iterations: int,
    unused_cpu: int = 0,
    save_interval: int = 10,
):
    """Train the population on the requested number of iterations. Manual adaptation of main's train()."""

    population.log("\n===> TRAINING <===\n")

    multi_env = get_multi_env(pop=population, game_config=game_config)
    msg = f"Repetitive evaluating on games: {games} for {iterations} iterations"
    population.log(msg, print_result=False)

    # Iterate and evaluate over the games
    saved = True
    for iteration in range(iterations):
        # Set and randomize the games
        multi_env.set_games(games, noise=True)

        # Prepare the generation's reporters for the generation
        population.reporters.start_generation(gen=population.generation,
                                              logger=population.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(population.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=population.config.evaluation,
            game_cfg=game_config.game,
            game_obs=return_dict,
            gen=population.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Gather and report statistics
        best = None
        for g in itervalues(population.population):
            if best is None or g.fitness > best.fitness: best = g
        population.reporters.post_evaluate(population=population.population,
                                           species=population.species,
                                           best_genome=best,
                                           logger=population.log)

        # Update the population's best_genome
        genomes = sorted(population.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        population.best_fitness[population.generation] = genomes[0][1].fitness
        population.best_genome_hist[population.generation] = genomes[0]
        population.best_genome = best

        # Let population evolve
        population.evolve()

        # Update the genomes such all have one hidden node
        for g in population.population.values():
            n_hidden, _ = g.size()
            while n_hidden < 1:
                g.mutate_add_connection(population.config.genome)
                n_hidden, _ = g.size()

        # End generation
        population.reporters.end_generation(population=population.population,
                                            name=str(population),
                                            species_set=population.species,
                                            logger=population.log)

        # Save the population
        if (iteration + 1) % save_interval == 0:
            population.save()
            saved = True
        else:
            saved = False

    # Make sure that last iterations saves
    if not saved: population.save()
Пример #12
0
def main(
    fitness,
    prob_gru: float,
    prob_gru_nr: float,
    prob_gru_nu: float,
    prob_simple_rnn: float,
    train_iterations=0,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_gru_nr: Probability of mutating towards a GRU-NR-node
    :param prob_gru_nu: Probability of mutating towards a GRU-NU-node
    :param prob_simple_rnn: Probability of mutating towards a SimpleRNN-node
    :param train_iterations: Number of training generations
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.genome.node_add_prob = 0  # Do not change number of hidden nodes
    cfg.genome.node_disable_prob = 0  # Do not change number of hidden nodes
    cfg.population.pop_size = 512
    cfg.population.compatibility_thr = 1.  # Very small since all architectures have strictly one hidden node

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_gru_nr = prob_gru_nr
    cfg.genome.rnn_prob_gru_nu = prob_gru_nu
    cfg.genome.rnn_prob_simple_rnn = prob_simple_rnn
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Create the population
    folder = get_folder(experiment_id=4)
    name = get_name(cfg=cfg, version=version)
    pop = Population(
        name=name,
        config=cfg,
        folder_name=folder,
        use_backup=False,
    )

    # Make sure that all of the genomes in the initial population have exactly one hidden node
    if pop.generation == 0:
        for g in pop.population.values():
            g.mutate_add_node(pop.config.genome)

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    gru_nr = cfg.genome.rnn_prob_gru_nr
    gru_nu = cfg.genome.rnn_prob_gru_nu
    rnn = cfg.genome.rnn_prob_simple_rnn
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 4 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> GRU-NR enabled:      {gru_nr > 0}  (probability={round(gru_nr, 2)})" \
          f"\n\t> GRU-NU enabled:      {gru_nu > 0}  (probability={round(gru_nu, 2)})" \
          f"\n\t> SRU enabled:         {rnn > 0}  (probability={round(rnn, 2)})" \
          f"\n\t> Saving under folder: {folder}" \
          f"\n\t> Training iterations: {train_iterations}\n"
    pop.log(msg)

    # Set games used for evaluation
    games_train, games_eval = get_game_ids(experiment_id=4)

    # Execute the requested segments
    try:
        train(
            game_config=cfg,
            games=games_train,
            iterations=train_iterations,
            population=pop,
            unused_cpu=unused_cpu,
        )

        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
        training_overview(population=pop, )
        visualize_genome(
            genome=pop.best_genome,
            population=pop,
        )

        # Perform GRU-analysis if population is NEAT-GRU
        if gru > 0:
            gru_analysis(
                population=pop,
                unused_cpu=unused_cpu,
                experiment_id=4,
            )
            monitor(
                game_id=games_eval[0],
                population=pop,
                genome=pop.best_genome,
            )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files
Пример #13
0
def main(
    fitness,
    prob_gru: float,
    prob_sru: float,
    prob_lstm: float,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_sru: Probability of mutating towards a SRU-node
    :param prob_lstm: Probability of mutating towards a LSTM-node
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.population.pop_size = 512

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_simple_rnn = prob_sru
    cfg.genome.rnn_prob_lstm = prob_lstm
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Copy population over from experiment1
    name = get_name(cfg=cfg, version=version)
    path_exp1 = f'population/storage/experiment1/{name}/'
    if not os.path.exists(path_exp1):
        raise Exception(
            f"Experiment 1 must be executed first for population {name}, terminating experiment 2..."
        )

    # Population exists in experiment1, copy over to experiment2 (change experiment1 population's folder and save)
    pop = Population(name=name,
                     config=cfg,
                     folder_name=get_folder(experiment_id=1),
                     use_backup=False)
    assert pop.generation > 0  # Population is not new (redundant check)
    folder = get_folder(experiment_id=2)
    pop.folder_name = folder
    pop.save()  # Overrides pre-existing populations!

    # Copy over all generations as well, since these are used during population evaluation
    path = f"population{'_backup' if pop.use_backup else ''}/storage/{pop.folder_name}/{pop}/"
    copy_tree(f"{path_exp1}generations", f"{path}generations")

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    sru = cfg.genome.rnn_prob_simple_rnn
    lstm = cfg.genome.rnn_prob_lstm
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 2 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> SRU enabled:         {sru > 0}  (probability={round(sru, 2)})" \
          f"\n\t> LSTM enabled:        {lstm > 0}  (probability={round(lstm, 2)})" \
          f"\n\t> Saving under folder: {folder}\n"
    pop.log(msg)

    # Set games used for evaluation
    _, games_eval = get_game_ids(experiment_id=2)

    # Execute the requested segments
    try:
        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files
Пример #14
0
def main(topology_id: int,
         batch_size: int = 1000,
         train_batch: int = 3,
         min_finished: float = MIN_FINISHED,
         unused_cpu: int = 2,
         save_pop: bool = False,
         use_backup: bool = False):
    """Run a population infinitely long and store all its good genomes."""
    # Get the CSV used to store the results in
    csv_path, csv_name, added = get_csv_path(topology_id, use_backup=use_backup, batch_size=batch_size)
    
    # Create the population
    name = csv_name if save_pop else 'dummy'
    cfg = get_config()
    folder = get_folder(experiment_id=6)
    pop = Population(
            name=name,
            config=cfg,
            folder_name=folder,
            use_backup=use_backup,
            overwrite=True,  # Every iteration, create a new population from scratch
    )
    
    # Replace the population's initial population with the requested topologies genomes
    for g_id in pop.population.keys(): pop.population[g_id] = get_genome(topology_id, g_id=g_id, cfg=cfg)
    pop.species.speciate(config=pop.config,
                         population=pop.population,
                         generation=pop.generation,
                         logger=pop.log)
    
    # Set games and environment used for training and evaluation
    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 6 <===\n")
    games_train, games_eval = get_game_ids(experiment_id=6)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)
    
    # Keep training and evolving the network until the complete CSV is filled
    last_saved = pop.generation
    try:
        while added < batch_size:
            t = time.localtime()
            pop.log(f"\n\n===> Selective genome creation at {added / batch_size * 100}%, "
                    f"storing in csv '{csv_path.split('/')[-1]}' "
                    f"({t.tm_hour:02d}h-{t.tm_min:02d}m-{t.tm_sec:02d}s) <===")
            
            # Train the population
            pop.log("\n===> Training <===")
            for _ in tqdm(range(train_batch), desc="Training"):
                train_env.set_games(games_train, noise=True)
                genomes = list(iteritems(pop.population))
                
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()
                
                for genome in genomes:
                    pool.apply_async(func=train_env.eval_genome, args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join()  # Postpone continuation until everything is finished
                
                # Calculate the fitness from the given return_dict
                fitness = calc_pop_fitness(
                        fitness_cfg=pop.config.evaluation,
                        game_cfg=cfg.game,
                        game_obs=return_dict,
                        gen=pop.generation,
                )
                for i, genome in genomes:
                    genome.fitness = fitness[i]
                
                # Update the population's best_genome
                best = None
                for g in itervalues(pop.population):
                    if best is None or g.fitness > best.fitness: best = g
                genomes = sorted(pop.population.items(), key=lambda x: x[1].fitness, reverse=True)
                pop.best_fitness[pop.generation] = genomes[0][1].fitness
                pop.best_genome_hist[pop.generation] = genomes[0]
                pop.best_genome = best
                pop.log(f"Best training fitness: {best.fitness}")
                
                # Let population evolve
                pop.evolve()
                
                # Constraint each of the population's new genomes to the given topology
                for g in pop.population.values():
                    enforce_topology(g, topology_id=topology_id)
            
            # Save the population after training
            if pop.generation - last_saved >= 100:
                pop.save()
                last_saved = pop.generation
            
            # Evaluate the current population as was done in experiment6
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome, args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished
            
            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                    fitness_cfg=cfg.evaluation,
                    game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            
            # Give evaluation overview of population
            pop.log(f"Best evaluation finish ratio: {round(best.fitness, 2)}")
            best_str = str(best).replace("\n", "\n\t")
            best_str += "\n\t" + str(best.nodes[2]).replace("\n", "\n\t")
            pop.log(f"Best genome: \n\t{best_str}")
            sids = list(iterkeys(pop.species.species))
            sids.sort()
            msg = f"\nPopulation '{name}' has {len(pop.species.species):d} species:" \
                  f"\n\t specie    age    size    finished    stag " \
                  f"\n\t========  =====  ======  ==========  ======"
            pop.log(msg) if pop.log else print(msg)
            for sid in sids:
                s = pop.species.species[sid]
                a = pop.generation - s.created
                n = len(s.members)
                sf = [g.fitness for g in s.members.values() if g.fitness]
                f = "--" if len(sf) == 0 else f"{max(sf):.2f}"
                st = pop.generation - s.last_improved
                msg = f"\t{sid:^8}  {a:^5}  {n:^6}  {f:^10}  {st:^6}"
                pop.log(msg) if pop.log else print(msg)
            
            # Write the result to CSV
            with open(csv_path, 'a', newline='') as f:
                writer = csv.writer(f)
                for _, g in genomes:
                    # Only write the genomes that exceed the minimum 'finished ratio' threshold!
                    if g.fitness >= min_finished:
                        writer.writerow(get_genome_parameters(g, topology_id=topology_id))
                        added += 1
    finally:
        # Remove the dummy population if it exists
        pop.save()
        path = f"population{'_backup' if use_backup else ''}/storage/{pop.folder_name}/dummy/"
        if os.path.exists(path):
            shutil.rmtree(path)
Пример #15
0
def create_genomes(genome: Genome, pop: Population, d: int, range_width: int):
    """Create mutations of the provided genome and inject these in the given population.."""
    pop.log(f"{pop.name} - Setting up genomes...")
    pbar = tqdm(range(((range_width + range_width + 1) ** 2) * 3), desc="Generating genomes")
    genome_key = 0
    
    gru_node_id = None
    for node_id, node in genome.nodes.items():
        if type(node) == GruNodeGene:
            gru_node_id = node_id
            break
    
    # Create the reset-mutated genomes
    for a in range(-range_width, range_width + 1):
        w_xh = np.asarray([[a / d], [0], [0]])
        for b in range(-range_width, range_width + 1):
            w_hh = np.asarray([[b / d], [0], [0]])
            
            # Add the specified genome to the population
            new_genome = copy.deepcopy(genome)
            new_genome.nodes[gru_node_id].weight_xh_full += w_xh
            new_genome.nodes[gru_node_id].weight_hh += w_hh
            new_genome.fitness = None
            new_genome.key = genome_key
            pop.population[genome_key] = new_genome
            genome_key += 1
            pbar.update()
    
    # Create the update-mutated genomes
    for a in range(-range_width, range_width + 1):
        w_xh = np.asarray([[0], [a / d], [0]])
        for b in range(-range_width, range_width + 1):
            w_hh = np.asarray([[0], [b / d], [0]])
            
            # Add the specified genome to the population
            new_genome = copy.deepcopy(genome)
            new_genome.nodes[gru_node_id].weight_xh_full += w_xh
            new_genome.nodes[gru_node_id].weight_hh += w_hh
            new_genome.fitness = None
            new_genome.key = genome_key
            pop.population[genome_key] = new_genome
            genome_key += 1
            pbar.update()
    
    # Create the candidate-mutated genomes
    for a in range(-range_width, range_width + 1):
        w_xh = np.asarray([[0], [0], [a / d]])
        for b in range(-range_width, range_width + 1):
            w_hh = np.asarray([[0], [0], [b / d]])
            
            # Add the specified genome to the population
            new_genome = copy.deepcopy(genome)
            new_genome.nodes[gru_node_id].weight_xh_full += w_xh
            new_genome.nodes[gru_node_id].weight_hh += w_hh
            new_genome.fitness = None
            new_genome.key = genome_key
            pop.population[genome_key] = new_genome
            genome_key += 1
            pbar.update()
    pbar.close()
    assert len(pop.population) == (((range_width - -range_width + 1) ** 2) * 3)
    pop.save()
Пример #16
0
def main(pop_name: str,
         version: int,
         unused_cpu: int = 2,
         use_backup: bool = False):
    # Check if valid population name
    if pop_name not in SUPPORTED:
        raise Exception(f"Population '{pop_name}' not supported!")
    # Create the population
    cfg = get_config()
    cfg.population.specie_elitism = 1
    folder = get_folder(experiment_id=7)
    pop = Population(
        name=f'{pop_name}/v{version}',
        config=cfg,
        folder_name=folder,
        use_backup=use_backup,
    )

    # Replace the population's initial population with the requested topologies genomes
    if pop.generation == 0:
        for g_id in pop.population.keys():
            pop.population[g_id] = get_topology(pop_name, gid=g_id, cfg=cfg)
        pop.species.speciate(config=pop.config,
                             population=pop.population,
                             generation=pop.generation,
                             logger=pop.log)

    pop.log(f"\n\n\n===> RUNNING EXPERIMENT 7 <===\n")
    # Set games and environment used for training and evaluation
    games_train, games_eval = get_game_ids(experiment_id=7)
    train_env = get_multi_env(config=cfg)
    eval_env = get_multi_env(config=cfg)
    eval_env.set_games(games_eval, noise=False)

    solution_found = False
    while not solution_found:
        # Train the population for a single iteration
        pop.log("\n===> TRAINING <===")
        train_env.set_games(games_train, noise=True)

        # Prepare the generation's reporters for the generation
        pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

        # Fetch the dictionary of genomes
        genomes = list(iteritems(pop.population))

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        for genome in genomes:
            pool.apply_async(func=train_env.eval_genome,
                             args=(genome, return_dict))
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished

        # Calculate the fitness from the given return_dict
        fitness = calc_pop_fitness(
            fitness_cfg=pop.config.evaluation,
            game_cfg=cfg.game,
            game_obs=return_dict,
            gen=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]

        # Update the population's best_genome
        best = None
        for g in itervalues(pop.population):
            if best is None or g.fitness > best.fitness: best = g
        pop.reporters.post_evaluate(population=pop.population,
                                    species=pop.species,
                                    best_genome=best,
                                    logger=pop.log)

        # Update the population's best_genome
        genomes = sorted(pop.population.items(),
                         key=lambda x: x[1].fitness,
                         reverse=True)
        pop.best_fitness[pop.generation] = genomes[0][1].fitness
        pop.best_genome_hist[pop.generation] = genomes[0]
        pop.best_genome = best

        # Let population evolve
        evolve(pop, pop_name)

        # End generation
        pop.reporters.end_generation(population=pop.population,
                                     name=str(pop),
                                     species_set=pop.species,
                                     logger=pop.log)

        # Test if evaluation finds a solution for the new generation, impossible if fitness < 0.7
        if pop.best_genome.fitness > 0.7 or pop.generation % 10 == 0:
            pop.log("\n===> EVALUATING <===")
            genomes = list(iteritems(pop.population))
            pool = mp.Pool(mp.cpu_count() - unused_cpu)
            manager = mp.Manager()
            return_dict = manager.dict()
            for genome in genomes:
                pool.apply_async(func=eval_env.eval_genome,
                                 args=(genome, return_dict))
            pool.close()  # Close the pool
            pool.join()  # Postpone continuation until everything is finished

            # Calculate the fitness from the given return_dict
            finished = calc_finished_ratio(
                fitness_cfg=cfg.evaluation,
                game_obs=return_dict,
            )
            best = None
            for i, genome in genomes:
                genome.fitness = finished[i]
                if best is None or finished[i] > best.fitness: best = genome
            pop.log(f"Best genome:\n{best}\n{best.nodes[2]}")

            # Solution is found
            if best.fitness == 1:
                pop.best_genome = best
                pop.log(f"Solution found!")
                solution_found = True  # End the outer while-loop

        # Save the population with their evaluation results
        pop.save()
Пример #17
0
    def evaluate_and_evolve(
        self,
        pop: Population,
        n: int = 1,
        parallel=True,
        save_interval: int = 1,
    ):
        """
        Evaluate the population on the same set of games.
        
        :param pop: Population object
        :param n: Number of generations
        :param parallel: Parallel the code (disable parallelization for debugging purposes)
        :param save_interval: Indicates how often a population gets saved
        """
        multi_env = get_multi_env(pop=pop, game_config=self.game_config)
        msg = f"Repetitive evaluating on games: {self.games} for {n} iterations"
        pop.log(msg, print_result=False)

        # Iterate and evaluate over the games
        saved = True
        for iteration in range(n):
            # Set and randomize the games
            multi_env.set_games(self.games, noise=True)

            # Prepare the generation's reporters for the generation
            pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

            # Fetch the dictionary of genomes
            genomes = list(iteritems(pop.population))

            if parallel:
                # Initialize the evaluation-pool
                pool = mp.Pool(mp.cpu_count() - self.unused_cpu)
                manager = mp.Manager()
                return_dict = manager.dict()

                for genome in genomes:
                    pool.apply_async(func=multi_env.eval_genome,
                                     args=(genome, return_dict))
                pool.close()  # Close the pool
                pool.join(
                )  # Postpone continuation until everything is finished
            else:
                return_dict = dict()
                for genome in tqdm(genomes, desc="sequential training"):
                    multi_env.eval_genome(genome, return_dict)

            # Calculate the fitness from the given return_dict
            fitness = calc_pop_fitness(
                fitness_cfg=pop.config.evaluation,
                game_cfg=self.game_config.game,
                game_obs=return_dict,
                gen=pop.generation,
            )
            for i, genome in genomes:
                genome.fitness = fitness[i]

            # Gather and report statistics
            best = None
            for g in itervalues(pop.population):
                if best is None or g.fitness > best.fitness: best = g
            pop.reporters.post_evaluate(population=pop.population,
                                        species=pop.species,
                                        best_genome=best,
                                        logger=pop.log)

            # Update the population's best_genome
            genomes = sorted(pop.population.items(),
                             key=lambda x: x[1].fitness,
                             reverse=True)
            pop.best_fitness[pop.generation] = genomes[0][1].fitness
            pop.best_genome_hist[pop.generation] = genomes[0]
            pop.best_genome = best

            # Let population evolve
            pop.evolve()

            # End generation
            pop.reporters.end_generation(population=pop.population,
                                         name=str(pop),
                                         species_set=pop.species,
                                         logger=pop.log)

            # Save the population
            if (iteration + 1) % save_interval == 0:
                pop.save()
                saved = True
            else:
                saved = False

        # Make sure that last iterations saves
        if not saved: pop.save()
Пример #18
0
def single_evaluation(multi_env, parallel: bool, pop: Population,
                      unused_cpu: int):
    """
    Perform a single evaluation-iteration.
    
    :param multi_env: Environment used to execute the game-simulation in
    :param parallel: Boolean indicating if training happens in parallel or not
    :param pop: Population used to evaluate on
    :param unused_cpu: Number of CPU-cores not used during evaluation
    """
    # Prepare the generation's reporters for the generation
    pop.reporters.start_generation(gen=pop.generation, logger=pop.log)

    # Fetch the dictionary of genomes
    genomes = list(iteritems(pop.population))

    if parallel:
        pbar = tqdm(total=len(genomes), desc="parallel training")

        # Initialize the evaluation-pool
        pool = mp.Pool(mp.cpu_count() - unused_cpu)
        manager = mp.Manager()
        return_dict = manager.dict()

        def cb(*_):
            """Update progressbar after finishing a single genome's evaluation."""
            pbar.update()

        for genome in genomes:
            pool.apply_async(func=multi_env.eval_genome,
                             args=(genome, return_dict),
                             callback=cb)
        pool.close()  # Close the pool
        pool.join()  # Postpone continuation until everything is finished
        pbar.close()  # Close the progressbar
    else:
        return_dict = dict()
        for genome in tqdm(genomes, desc="sequential training"):
            multi_env.eval_genome(genome, return_dict)

    # Calculate the fitness from the given return_dict
    try:
        fitness = calc_pop_fitness(
            fitness_config=pop.config.evaluation,
            game_observations=return_dict,
            game_params=multi_env.get_game_params(),
            generation=pop.generation,
        )
        for i, genome in genomes:
            genome.fitness = fitness[i]
    except Exception:  # TODO: Fix! Sometimes KeyError in fitness (path problem)
        pop.log(
            f"Exception at fitness calculation: \n{traceback.format_exc()}",
            print_result=False)
        warnings.warn(
            f"Exception at fitness calculation: \n{traceback.format_exc()}")
        # Set fitness to zero for genomes that have no fitness set yet
        for i, genome in genomes:
            if not genome.fitness: genome.fitness = 0.0

    # Gather and report statistics
    best = None
    for g in itervalues(pop.population):
        if best is None or g.fitness > best.fitness: best = g
    pop.reporters.post_evaluate(population=pop.population,
                                species=pop.species,
                                best_genome=best,
                                logger=pop.log)

    # Update the population's best_genome
    genomes = sorted(pop.population.items(),
                     key=lambda x: x[1].fitness,
                     reverse=True)
    pop.best_genome_hist[
        pop.generation] = genomes[:pop.config.population.genome_elitism]
    if pop.best_genome is None or best.fitness > pop.best_genome.fitness:
        pop.best_genome = best

    # Let population evolve
    pop.evolve()

    # End generation
    pop.reporters.end_generation(population=pop.population,
                                 name=str(pop),
                                 species_set=pop.species,
                                 logger=pop.log)
Пример #19
0
def main(
    fitness,
    prob_gru: float,
    prob_sru: float,
    prob_lstm: float,
    train_iterations=0,
    version=0,
    unused_cpu=1,
):
    """
    Run a population's configuration.

    :param fitness: Fitness function used to evaluate the population
    :param prob_gru: Probability of mutating towards a GRU-node
    :param prob_sru: Probability of mutating towards a SRU-node
    :param prob_lstm: Probability of mutating towards a LSTM-node
    :param train_iterations: Number of training generations
    :param version: Version of the model
    :param unused_cpu: Number of CPUs not used during training
    """
    # Re-configure the config-file
    cfg = Config()
    cfg.bot.angular_dir = []
    cfg.bot.delta_dist_enabled = False
    cfg.bot.dist_enabled = True
    cfg.game.duration = 60  # 60 seconds should be enough to reach the target from each starting orientation
    cfg.population.pop_size = 512

    # Let inputs apply to configuration
    cfg.genome.rnn_prob_gru = prob_gru
    cfg.genome.rnn_prob_simple_rnn = prob_sru
    cfg.genome.rnn_prob_lstm = prob_lstm
    cfg.evaluation.fitness = fitness
    cfg.update()

    # Create the population
    folder = get_folder(experiment_id=1)
    name = get_name(cfg=cfg, version=version)
    pop = Population(
        name=name,
        config=cfg,
        folder_name=folder,
        use_backup=False,
    )

    # Give overview of population
    gru = cfg.genome.rnn_prob_gru
    sru = cfg.genome.rnn_prob_simple_rnn
    lstm = cfg.genome.rnn_prob_lstm
    msg = f"\n\n\n\n\n===> RUNNING EXPERIMENT 1 FOR THE FOLLOWING CONFIGURATION: <===" \
          f"\n\t> fitness:             {cfg.evaluation.fitness}" \
          f"\n\t> GRU enabled:         {gru > 0}  (probability={round(gru, 2)})" \
          f"\n\t> SRU enabled:         {sru > 0}  (probability={round(sru, 2)})" \
          f"\n\t> LSTM enabled:        {lstm > 0}  (probability={round(lstm, 2)})" \
          f"\n\t> Saving under folder: {folder}" \
          f"\n\t> Training iterations: {train_iterations}\n"
    pop.log(msg)

    # Set games used for evaluation
    games_train, games_eval = get_game_ids(experiment_id=1)

    # Execute the requested segments
    try:
        train(
            debug=False,
            games=games_train,
            iterations=train_iterations,
            population=pop,
            unused_cpu=unused_cpu,
        )

        # Evaluate the trained population
        evaluate(
            games=games_eval,
            population=pop,
            unused_cpu=unused_cpu,
        )
        training_overview(population=pop, )
        visualize_genome(
            genome=pop.best_genome,
            population=pop,
        )
    except Exception as e:
        pop.log(traceback.format_exc(), print_result=False)
        raise e
    finally:
        process_killer('run_population.py')  # Close all the terminated files