def test_siamese_bert_model(self): bert_config = modeling.BertConfig.from_json_file( "../bert_model/data/chinese_L-12_H-768_A-12/bert_config.json") tokenizer = tokenization.FullTokenizer( "../bert_model/data/chinese_L-12_H-768_A-12/vocab.txt", do_lower_case=True) max_seq_length = 128 batch_size = 8 bert_siamese_model = run_pretraining.SiameseBertModel( config=bert_config, is_training=True, init_checkpoint= "../bert_model/data/chinese_L-12_H-768_A-12/bert_model.ckpt") bert_siamese_model.compile(optimizer=tf.keras.optimizers.Adam( learning_rate=0.0001)) siamese_processor = SiameseProcessor(tokenizer=tokenizer, max_seq_length=max_seq_length) lines = [("我想买保险", "我还想买保险", "0"), ("我想买保险", "我不想买保险", "1"), ("我想去北京玩耍", "我打算去北京玩耍", "0"), ("我想去北京玩耍", "我不想去北京玩耍", "1"), ("能不能借钱给我呢", "可以借钱给我吗", "0"), ("我想借你钱", "我不想借你钱", "1")] examples = siamese_processor._create_examples(lines, set_type="dev") data = siamese_processor.convert_examples_to_features(examples) siamese_processor.write_features_into_tfrecord( filename="./siamese_data", features=data) d = siamese_processor.read_features_from_tfrecord( filename="./siamese_data", batch_size=6) d = d.repeat() bert_siamese_model.fit(d, epochs=5, steps_per_epoch=20) bert_siamese_model.evaluate(d, steps=3) print(bert_siamese_model.predict(d, steps=1))
def main(_): import logging tf.get_logger().setLevel(logging.INFO) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.io.gfile.glob(input_pattern)) tf.get_logger().info("*** Reading from input files ***") for input_file in input_files: tf.get_logger().info(" %s", input_file) rng = random.Random(FLAGS.random_seed) instances = create_training_instances(input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, rng) output_files = FLAGS.output_file.split(",") tf.get_logger().info("*** Writing to output files ***") for output_file in output_files: tf.get_logger().info(" %s", output_file) write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, FLAGS.max_predictions_per_seq, output_files)
def __init__(self, vocab_file, masked_lm_prob=0.15, max_predictions_per_seq=20, do_lower_case=True, max_seq_length=128, dupe_factor=10, short_seq_prob=0.1, do_whole_word=False, random_seed=100): self.vocab_file = vocab_file self.do_lower_case = do_lower_case self.max_seq_length = max_seq_length self.sample = Sample(do_whole_word=do_whole_word) self.dupe_factor = dupe_factor self.masked_lm_prob = masked_lm_prob self.max_predictions_per_seq = max_predictions_per_seq self.short_seq_prob = short_seq_prob self.random_seed = random_seed self.tokenizer = tokenization.FullTokenizer( vocab_file=self.vocab_file, do_lower_case=self.do_lower_case)
def test_full_tokenizer(self): vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", "," ] with tempfile.NamedTemporaryFile(delete=False) as vocab_writer: if six.PY2: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) else: vocab_writer.write("".join([x + "\n" for x in vocab_tokens ]).encode("utf-8")) vocab_file = vocab_writer.name tokenizer = tokenization.FullTokenizer(vocab_file) os.unlink(vocab_file) tokens = tokenizer.tokenize(u"UNwant\u00E9d,running") self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertAllEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
def main(_): absl.logging.set_verbosity(absl.logging.INFO) layer_indexes = [int(x) for x in FLAGS.layers.split(",")] bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) """ is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( master=FLAGS.master, tpu_config=tf.contrib.tpu.TPUConfig( num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) """ run_config = tf.estimator.RunConfig() examples = read_examples(FLAGS.input_file) features = convert_examples_to_features(examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer) unique_id_to_feature = {} for feature in features: unique_id_to_feature[feature.unique_id] = feature model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, layer_indexes=layer_indexes, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_one_hot_embeddings) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. # modify begin """ estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, predict_batch_size=FLAGS.batch_size) """ #modify end estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params={ "batch_size": FLAGS.batch_size, }) input_fn = input_fn_builder(features=features, seq_length=FLAGS.max_seq_length) with codecs.getwriter("utf-8")(tf.io.gfile.GFile(FLAGS.output_file, "w")) as writer: for result in estimator.predict(input_fn, yield_single_examples=True): unique_id = int(result["unique_id"]) feature = unique_id_to_feature[unique_id] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id all_features = [] for (i, token) in enumerate(feature.tokens): all_layers = [] for (j, layer_index) in enumerate(layer_indexes): layer_output = result["layer_output_%d" % j] layers = collections.OrderedDict() layers["index"] = layer_index layers["values"] = [ round(float(x), 6) for x in layer_output[i:(i + 1)].flat ] all_layers.append(layers) features = collections.OrderedDict() features["token"] = token features["layers"] = all_layers all_features.append(features) output_json["features"] = all_features writer.write(json.dumps(output_json) + "\n")
def main(_): logging.getLogger().setLevel(logging.INFO) processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.io.gfile.makedirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) logging.info("***** Running training *****") logging.info(" Num examples = %d", len(train_examples)) logging.info(" Batch size = %d", FLAGS.train_batch_size) logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) logging.info("***** Running evaluation *****") logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.io.gfile.GFile(output_eval_file, "w") as writer: logging.info("***** Eval results *****") for key in sorted(result.keys()): logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) logging.info("***** Running prediction*****") logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.io.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples
else: d = tf.data.TFRecordDataset(input_files) d = d.map(lambda record: about_tfrecord.parse_example( record, name_to_features)) d = d.map(lambda x: add_attention_mask(x, is_training)) d = d.batch(batch_size=batch_size, drop_remainder=True) return d if __name__ == "__main__": input_file = "../bert/sample_text.txt" output_file = "test_data/pretraining_data" vocab_file = "./test_data/vocab.txt" tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=True) ptdm = PreTrainingDataMan(vocab_file=vocab_file, max_seq_length=128, max_predictions_per_seq=15) if not os.path.exists(output_file): ptdm.create_pretraining_data(input_file, output_file) dataset = ptdm.read_data_from_tfrecord(output_file, is_training=True, batch_size=1) i = 0 for data in dataset: print(data) ids = data["input_ids"].numpy() print(tokenizer.convert_ids_to_tokens(ids[0])) i += 1 print(i)