Пример #1
0
    ax.axhline(0, color='grey', ls='dashed')
    #ax.set_title('q{}'.format(i))


def plot_position(ax, i):
    ax.plot(positions_gt[:, i], color='grey')
    ax.plot(positions_test[:, i])
    #ax.yaxis.set_ticks(np.arange(min_pos, max_pos, 1))
    ax.set_ylim(
        min(
            0,
            math.floor(min(min(positions_gt[:, i]), min(positions_test[:, i])))
            - 1))


_, labels_gt = read_label_file(def_file, convert_to_axis=True)
_, labels_test = read_label_file(test_file, convert_to_axis=False)

positions_gt = np.array(map(lambda x: x[0:3], labels_gt))
positions_test = np.array(map(lambda x: x[0:3], labels_test))

orientations_gt = np.array(map(lambda x: x[3:], labels_gt))
orientations_test = np.array(map(lambda x: x[3:], labels_test))

if orientations_gt.shape[1] == 3:
    pass
elif flip == 'auto':
    for i, x in enumerate(orientations_gt):
        if sum(abs(-x - orientations_test[i])) < sum(
                abs(x - orientations_test[i])):
            orientations_gt[i] = -x
Пример #2
0
parser.add_argument('--arrow_len',
                    action='store',
                    type=float,
                    required=False,
                    default=1)
parser.add_argument('--connect',
                    action='store_true',
                    help='''Connect consecutive camera positions with lines''')
parser.add_argument('--rings', action='store', nargs='*', required=False)
parser.add_argument('--plot_gt', action='store_true')
parser.add_argument('--plot_diff', action='store_true')
parser.add_argument('-u', '--uncertainty', action='store_true')
args = parser.parse_args()

if not args.model or args.plot_gt or args.plot_diff:
    _, labels = read_label_file(args.dataset)
    positions_gt = np.array([l[0:3] for l in labels])
    orientations_gt = np.array([l[3:7] for l in labels])

if args.model:
    input_size = 256
    test_reader = ImageReader(args.dataset,
                              batch_size=1,
                              image_size=[input_size, input_size],
                              randomise=False)
    n_images = test_reader.total_images()

    positions = np.empty([0, 3])
    orientations = np.empty([0, 4])
    if args.uncertainty:
        std_x = []
Пример #3
0
    plt.plot(pos[0] + radius * np.cos(t),
             pos[1] + radius * np.sin(t),
             color,
             marker='.',
             lw=0,
             ms=10)


def_file = 'results_new/david_6a/test2_localised.txt'
david = True
side = True
extrapolation = False
radius = 3.5  #*np.sin(1.2)
lim = 4.5

_, labels = read_label_file(def_file, convert_to_axis=False)
positions = np.array([l[0:3] for l in labels])
orientations = np.array([l[3:] for l in labels])

if side and david:
    positions_2d = [(np.sqrt(p[0] * p[0] + p[1] * p[1]), p[2])
                    for p in positions]
    orientations_2d = [(-1, 0) for o in orientations]
elif side:
    positions_2d = [((p[0] + p[1]) / np.sqrt(2), p[2]) for p in positions]
    orientations_2d = [((o[0] + o[1]) / np.sqrt(2), o[2])
                       for o in orientations]
else:
    positions_2d = [(p[0], p[1]) for p in positions]
    orientations_2d = [(o[0], o[1]) for o in orientations]
Пример #4
0
from posenet.utils import progress_bar


parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', action='store', required=True, 
    help='''Path to a trained Tensorflow model (.ckpt file)''')
parser.add_argument('-d', '--dataset', action='store', required=True, 
    help='''Path to a text file listing images and camera poses''')
parser.add_argument('-o', '--output', action='store', required=False)
args = parser.parse_args()    


if os.path.isdir(args.dataset):
    imgs = glob.glob('{}/*.png'.format(args.dataset))
elif args.dataset.endswith('.txt'):
    imgs, _ = read_label_file(args.dataset, full_paths=True)
elif args.dataset.endswith('.png'):
    imgs = [args.dataset]
    from matplotlib import pyplot as plt
else:
    imgs = []


n_images = len(imgs)
if n_images > 1 and not args.output:
    print('--output argument required')
    sys.exit(1)
if n_images == 0:
    print('No images found')
    sys.exit(1)
Пример #5
0
    required=True,
    help='''Path to a text file listing images and camera poses''')
parser.add_argument('-o', '--output', action='store', required=False)
parser.add_argument('-u', '--uncertainty', action='store_true')
args = parser.parse_args()

input_size = 224
test_reader = ImageReader(args.dataset,
                          batch_size=1,
                          image_size=[input_size, input_size],
                          random_crop=False,
                          randomise=False)
n_images = test_reader.total_images()

# Read the definition file to get file names
paths, _ = read_label_file(args.dataset)
paths = map(lambda x: os.path.basename(x), paths)

# Localise
with Localiser(input_size, args.model,
               uncertainty=args.uncertainty) as localiser:
    if args.output:
        f = open(args.output, 'w')
        f.write('\n\n\n')  # Hack for now

    for i in range(n_images):
        images_feed, labels_feed = test_reader.next_batch()

        # Make prediction
        predicted = localiser.localise(images_feed)
        x = [round(v, 6) for v in predicted['x']]
Пример #6
0
if args.agg:
    matplotlib.use('Agg')
import matplotlib.colors as colors
import matplotlib.cm as cmx
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

from posenet.core.image_reader import ImageReader, read_label_file
from posenet.core.localiser import Localiser
from posenet.utils import progress_bar
from posenet.utils import rotate_by_quaternion

output_type = 'axis' if args.axis else 'quat'

if not args.model or args.plot_gt or args.plot_diff:
    _, labels = read_label_file(args.dataset,
                                convert_to_axis=args.convert_to_axis)
    positions_gt = np.array([l[0:3] for l in labels])
    orientations_gt = np.array([l[3:] for l in labels])

if args.model:
    input_size = [256, 455]
    crop_size = [256, 256]
    test_reader = ImageReader(args.dataset,
                              batch_size=1,
                              image_size=input_size,
                              crop_size=crop_size,
                              centre_crop=True,
                              randomise=False)
    n_images = test_reader.total_images()

    positions = []