def __init__(self, dataset=VocDataSet().__dict__, fields=['image', 'gt_box', 'gt_label'], image_shape=[3, 300, 300], sample_transforms=[ DecodeImage(to_rgb=True, with_mixup=False), NormalizeBox(), RandomDistort(brightness_lower=0.875, brightness_upper=1.125, is_order=True), ExpandImage(max_ratio=4, prob=0.5), CropImage(batch_sampler=[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]], satisfy_all=False, avoid_no_bbox=False), ResizeImage(target_size=300, use_cv2=False, interp=1), RandomFlipImage(is_normalized=True), Permute(), NormalizeImage(mean=[127.5, 127.5, 127.5], std=[127.502231, 127.502231, 127.502231], is_scale=False) ], batch_transforms=[], batch_size=32, shuffle=True, samples=-1, drop_last=True, num_workers=8, bufsize=10, use_process=True, memsize=None): sample_transforms.append(ArrangeSSD()) super(SSDTrainFeed, self).__init__( dataset, fields, image_shape, sample_transforms, batch_transforms, batch_size=batch_size, shuffle=shuffle, samples=samples, drop_last=drop_last, num_workers=num_workers, bufsize=bufsize, use_process=use_process, memsize=None) self.mode = 'TRAIN'
def __init__(self, dataset=VocDataSet(VOC_VAL_ANNOTATION).__dict__, fields=['image', 'gt_box', 'gt_label', 'is_difficult'], image_shape=[3, 300, 300], sample_transforms=[ DecodeImage(to_rgb=True, with_mixup=False), NormalizeBox(), ResizeImage(target_size=300, use_cv2=False, interp=1), Permute(), NormalizeImage(mean=[127.5, 127.5, 127.5], std=[127.502231, 127.502231, 127.502231], is_scale=False) ], batch_transforms=[], batch_size=64, shuffle=False, samples=-1, drop_last=True, num_workers=8, bufsize=10, use_process=False): sample_transforms.append(ArrangeSSD()) if isinstance(dataset, dict): dataset = VocDataSet(**dataset) super(SSDEvalFeed, self).__init__(dataset, fields, image_shape, sample_transforms, batch_transforms, batch_size=batch_size, shuffle=shuffle, samples=samples, drop_last=drop_last, num_workers=num_workers, use_process=use_process) self.mode = 'VAL'