def resetdefaults(): """ resetdefaults(): Reset global plotting variables to default values. """ global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \ ppgplot_color_, ppgplot_font_size_ ppgplot.pgscf(ppgplot_font_) ppgplot.pgsls(ppgplot_linestyle_) ppgplot.pgslw(ppgplot_linewidth_) ppgplot.pgsci(ppgplot_colors_[ppgplot_color_]) ppgplot.pgsch(ppgplot_font_size_)
def resetdefaults(): """ resetdefaults(): Reset global plotting variables to default values. """ global ppgplot_font_, ppgplot_linestyle_, ppgplot_linewidth_, \ ppgplot_color_, ppgplot_font_size_ ppgplot.pgscf(ppgplot_font_) ppgplot.pgsls(ppgplot_linestyle_) ppgplot.pgslw(ppgplot_linewidth_) ppgplot.pgsci(ppgplot_colors_[ppgplot_color_]) # My little add-on to switch the background to white reset_colors() ppgplot.pgsch(ppgplot_font_size_)
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2=rangex otherxaxis=0 else: otherxaxis=1 if rangey2 is None: rangey2=rangey otheryaxis=0 else: otheryaxis=1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # My little add-on to switch the background to white if device == '/XWIN': reset_colors() if device == '/AQT': ppgplot.pgsci(0) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1,1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks=='in': env = "CMST" else: env = "CMSTI" if logx2: lxenv='L' else: lxenv='' if logy2: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox(env+lxenv, 0.0, 0, env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env+lyenv, 0.0, 0) else: ppgplot.pgbox(env+lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks=='in': env = "ST" else: env = "STI" if logx: lxenv='L' else: lxenv='' if logy: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) else: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) # My little add-on to switch the background to white if device == '/AQT' or device == '/XWIN': reset_colors() # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id==1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
def setmask(command, data, cdata): """ Sets the mask on a dset and dumps a file containing the mask which can be applied to other dsets using 'appmask'. This is an interactive routine which will request input from the user and is better not used in batch processing. Repeated calls of this routine can be used to build complex masks. The masks are always applied in the original order so that you can mask then partially unmask for example. Note that whatever slot you choose to define the mask will always end up masked; if you don't want this you may want to make a copy. Interactive usage: setmask slot mfile append [device reset x1 x2 y1 y2] mask type Arguments: slot -- an example slot to plot. mfile -- mask file append -- append to an old mask file if possible device -- plot device, e.g. '/xs' reset -- rest plot limits or not x1 -- left X plot limit x2 -- right X plot limit y1 -- bottom Y plot limit y2 -- top Y plot limit mask -- mask 'M', or unmask 'U' or quit 'Q'. type -- type of mask: 'X' masks using ranges in X Mask types: X -- mask a range in X Y -- mask a range in Y I -- mask a range of pixel indices P -- mask in 'phase', i.e. a range that repeats periodically. """ import trm.dnl.mask as mask # generate arguments inpt = inp.Input(DINT_ENV, DINT_DEF, inp.clist(command)) # register parameters inpt.register('slot', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('mfile', inp.Input.GLOBAL, inp.Input.PROMPT) inpt.register('append', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('device', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('reset', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('x1', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('x2', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('y1', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('y2', inp.Input.LOCAL, inp.Input.HIDE) inpt.register('mask', inp.Input.LOCAL, inp.Input.PROMPT) inpt.register('type', inp.Input.LOCAL, inp.Input.PROMPT) # get inputs slots = inpt.get_value('slot', 'slot to plot for mask definition', '1') slist = interp_slots(slots, True, data, nfind=1) dset = data[slist[0]] device = inpt.get_value('device', 'plot device', '/xs') # mask file mfile = inpt.get_value('mfile', 'mask file to save results to', subs.Fname('mask','.msk', subs.Fname.NEW)) append = inpt.get_value('append', 'add to an old mask file if possible', True) if append and mfile.exists(): mptr = open(mfile,'rb') gmask = pickle.load(mptr) gmask.app_mask(dset) mptr.close() else: gmask = mask.Gmask() # other parameters reset = inpt.get_value('reset', 'reset plot limits automatically?', True) # compute default limits (x1,x2,y1,y2) = dset.plimits() if (x2 - x1) < (x1+x2)/2./100.: xoff = x1 x1 = 0. x2 -= xoff else: xoff = 0. yoff = 0. if reset: inpt.set_default('x1', x1) inpt.set_default('x2', x2) inpt.set_default('y1', y1) inpt.set_default('y2', y2) x1 = inpt.get_value('x1', 'left-hand limit of plot', x1) x2 = inpt.get_value('x2', 'right-hand limit of plot', x2) y1 = inpt.get_value('y1', 'bottom limit of plot', y1) y2 = inpt.get_value('y2', 'top limit of plot', y2) m_or_u = inpt.get_value('mask', 'M(ask), U(nmask) or Q(uit)?', 'm', lvals=['m', 'M', 'u', 'U', 'q', 'Q']) if m_or_u.upper() == 'M': mtext = 'mask' else: mtext = 'unmask' mask_type = inpt.get_value('type', 'X, Y, P(hase), I(ndex) or Q(uit)?', 'x', lvals=['x', 'X', 'y', 'Y', 'p', 'P', 'i', 'I', 'q', 'Q']) # initialise plot try: pg.pgopen(device) pg.pgsch(1.5) pg.pgscf(2) pg.pgslw(2) pg.pgsci(4) pg.pgenv(x1,x2,y1,y2,0,0) (xlabel,ylabel) = dset.plabel(xoff,yoff) pg.pgsci(2) pg.pglab(xlabel, ylabel, dset.title) # plot the dset dset.plot(xoff,yoff) x = (x1+x2)/2. y = (y1+y2)/2. # now define masks ch = 'X' while ch.upper() != 'Q': # go through mask options if mask_type.upper() == 'X': print('Set cursor at the one end of the X range, Q to quit') (xm1,y,ch) = pg.pgband(7,0,x,y) if ch.upper() != 'Q': print('Set cursor at the other end of ' + 'the X range, Q to quit') xm2,y,ch = pg.pgband(7,0,xm1,y) if ch.upper() != 'Q': if xm1 > xm2: xm1,xm2 = xm2,xm1 umask = mask.Xmask(xoff+xm1, xoff+xm2, m_or_u.upper() == 'M') elif mask_type.upper() == 'I': print('Place cursor near a point and click to ' + mtext + ' it, Q to quit') x,y,ch = pg.pgband(7,0,x,y) if ch.upper() != 'Q': xmm1,xmm2,ymm1,ymm2 = pg.pgqvp(2) xscale = (xmm2-xmm1)/(x2-x1) yscale = (ymm2-ymm1)/(y2-y1) # only consider good data of opposite 'polarity' to the # change we are making. ok = (dset.good == True) & \ (dset.mask == (m_or_u.upper() == 'M')) if len(dset.x.dat[ok == True]): # compute physical squared distance of cursor from # points sqdist = npy.power( xscale*(dset.x.dat[ok]-(xoff+x)),2) + \ npy.power(yscale*(dset.y.dat[ok]-(yoff+y)),2) # select the index giving the minimum distance indices = npy.arange(len(dset))[ok] index = indices[sqdist.min() == sqdist][0] umask = mask.Imask(index, m_or_u.upper() == 'M') else: print('There seem to be no data to ' + mtext + '; data already ' + mtext + 'ed are ignored.') umask = None if ch.upper() != 'Q' and umask is not None: gmask.append(umask) umask.app_mask(dset) print('overplotting data') # over-plot the dset dset.plot(xoff,yoff) pg.pgclos() except pg.ioerror, err: raise DintError(str(err))
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2 = rangex otherxaxis = 0 else: otherxaxis = 1 if rangey2 is None: rangey2 = rangey otheryaxis = 0 else: otheryaxis = 1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1, 1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks == 'in': env = "CMST" else: env = "CMSTI" if logx2: lxenv = 'L' else: lxenv = '' if logy2: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox(env + lxenv, 0.0, 0, env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env + lyenv, 0.0, 0) else: ppgplot.pgbox(env + lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks == 'in': env = "ST" else: env = "STI" if logx: lxenv = 'L' else: lxenv = '' if logy: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) else: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id == 1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
t_max_curve=30 # Plot A (Airmass-Time) ######################## # PS OUTPUT ############################################################### filename=sys.argv[1] psfile = str(filename)+".ps" # print ("psfile\n") ppgplot.pgbegin(0,"psfile/VCPS", 1, 1) # pgbegin(0,"psfile/PS", 1, 1) # Plot Setting #################################################################### ppgplot.pgpaper(8,1.25) # window/paper size (width(inch), aspect) ppgplot.pgscf(2) # characte font (1: normal, 2: roman, 3: italic, 4: script) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.89) # viewport in the window (relative) ppgplot.pglab("", "", "Local Time [hour]") ppgplot.pgsvp(0.12, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pglabel("", "Airmass", "") # label settingoto s ppgplot.pgsch(1.0) # character height (size) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pgswin(t_min, t_max, a_max, a_min) # MIN,MAX of coordinate ppgplot.pgbox('BCTS', 0.0, 0, 'BCTSNV1', 0.1, 0) # coordinate settings ppgplot.pgbox('0', 0.0, 0, 'BCTSMV1', 0.1, 0) # coordinate settings # Put Header/ Axes Label
def main(): parser = OptionParser(usage) parser.add_option("-x", "--xwin", action="store_true", dest="xwin", default=False, help="Don't make a postscript plot, just use an X-window") parser.add_option("-p", "--noplot", action="store_false", dest="makeplot", default=True, help="Look for pulses but do not generate a plot") parser.add_option("-m", "--maxwidth", type="float", dest="maxwidth", default=0.0, help="Set the max downsampling in sec (see below for default)") parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0, help="Set a different threshold SNR (default=5.0)") parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0, help="Only plot events occuring after this time (s)") parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9, help="Only plot events occuring before this time (s)") parser.add_option("-g", "--glob", type="string", dest="globexp", default=None, help="Process the files from this glob expression") parser.add_option("-f", "--fast", action="store_true", dest="fast", default=False, help="Use a faster method of de-trending (2x speedup)") parser.add_option("-i", "--id", type="int", dest="obsid", default=0, help="enter an observation id") (opts, args) = parser.parse_args() if len(args)==0: if opts.globexp==None: print full_usage sys.exit(0) else: args = [] for globexp in opts.globexp.split(): args += glob.glob(globexp) useffts = True dosearch = True if opts.xwin: pgplot_device = "/XWIN" else: pgplot_device = "" fftlen = 8192 # Should be a power-of-two for best speed chunklen = 8000 # Must be at least max_downfact less than fftlen detrendlen = 1000 # length of a linear piecewise chunk of data for detrending blocks_per_chunk = chunklen / detrendlen overlap = (fftlen - chunklen)/2 worklen = chunklen + 2*overlap # currently it is fftlen... max_downfact = 30 default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150] if args[0].endswith(".singlepulse"): filenmbase = args[0][:args[0].rfind(".singlepulse")] dosearch = False elif args[0].endswith(".dat"): filenmbase = args[0][:args[0].rfind(".dat")] else: filenmbase = args[0] # Don't do a search, just read results and plot if not dosearch: info, DMs, candlist, num_v_DMstr = \ read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end) orig_N, orig_dt = int(info.N), info.dt obstime = orig_N * orig_dt else: DMs = [] candlist = [] num_v_DMstr = {} # Loop over the input files for filenm in args: if filenm.endswith(".dat"): filenmbase = filenm[:filenm.rfind(".dat")] else: filenmbase = filenm info = infodata.infodata(filenmbase+".inf") DMstr = "%.2f"%info.DM DMs.append(info.DM) N, dt = int(info.N), info.dt obstime = N * dt # Choose the maximum width to search based on time instead # of bins. This helps prevent increased S/N when the downsampling # changes as the DM gets larger. if opts.maxwidth > 0.0: downfacts = [x for x in default_downfacts if x*dt <= opts.maxwidth] else: downfacts = [x for x in default_downfacts if x <= max_downfact] if len(downfacts) == 0: downfacts = [default_downfacts[0]] if (filenm == args[0]): orig_N = N orig_dt = dt if useffts: fftd_kerns = make_fftd_kerns(downfacts, fftlen) if info.breaks: offregions = zip([x[1] for x in info.onoff[:-1]], [x[0] for x in info.onoff[1:]]) outfile = open(filenmbase+'.singlepulse', mode='w') # Compute the file length in detrendlens roundN = N/detrendlen * detrendlen numchunks = roundN / chunklen # Read in the file print 'Reading "%s"...'%filenm timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN) # Split the timeseries into chunks for detrending numblocks = roundN/detrendlen timeseries.shape = (numblocks, detrendlen) stds = Num.zeros(numblocks, dtype=Num.float64) # de-trend the data one chunk at a time print ' De-trending the data and computing statistics...' for ii, chunk in enumerate(timeseries): if opts.fast: # use median removal instead of detrending (2x speedup) tmpchunk = chunk.copy() tmpchunk.sort() med = tmpchunk[detrendlen/2] chunk -= med tmpchunk -= med else: # The detrend calls are the most expensive in the program timeseries[ii] = scipy.signal.detrend(chunk, type='linear') tmpchunk = timeseries[ii].copy() tmpchunk.sort() # The following gets rid of (hopefully) most of the # outlying values (i.e. power dropouts and single pulses) # If you throw out 5% (2.5% at bottom and 2.5% at top) # of random gaussian deviates, the measured stdev is ~0.871 # of the true stdev. Thus the 1.0/0.871=1.148 correction below. # The following is roughly .std() since we already removed the median stds[ii] = Num.sqrt((tmpchunk[detrendlen/40:-detrendlen/40]**2.0).sum() / (0.95*detrendlen)) stds *= 1.148 # sort the standard deviations and separate those with # very low or very high values sort_stds = stds.copy() sort_stds.sort() # identify the differences with the larges values (this # will split off the chunks with very low and very high stds locut = (sort_stds[1:numblocks/2+1] - sort_stds[:numblocks/2]).argmax() + 1 hicut = (sort_stds[numblocks/2+1:] - sort_stds[numblocks/2:-1]).argmax() + numblocks/2 - 2 std_stds = scipy.std(sort_stds[locut:hicut]) median_stds = sort_stds[(locut+hicut)/2] lo_std = median_stds - 4.0 * std_stds hi_std = median_stds + 4.0 * std_stds # Determine a list of "bad" chunks. We will not search these. bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0] print " pseudo-median block standard deviation = %.2f" % (median_stds) print " identified %d bad blocks out of %d (i.e. %.2f%%)" % \ (len(bad_blocks), len(stds), 100.0*float(len(bad_blocks))/float(len(stds))) stds[bad_blocks] = median_stds print " Now searching..." # Now normalize all of the data and reshape it to 1-D timeseries /= stds[:,Num.newaxis] timeseries.shape = (roundN,) # And set the data in the bad blocks to zeros # Even though we don't search these parts, it is important # because of the overlaps for the convolutions for bad_block in bad_blocks: loind, hiind = bad_block*detrendlen, (bad_block+1)*detrendlen timeseries[loind:hiind] = 0.0 # Convert to a set for faster lookups below bad_blocks = set(bad_blocks) # Step through the data dm_candlist = [] for chunknum in range(numchunks): loind = chunknum*chunklen-overlap hiind = (chunknum+1)*chunklen+overlap # Take care of beginning and end of file overlap issues if (chunknum==0): # Beginning of file chunk = Num.zeros(worklen, dtype=Num.float32) chunk[overlap:] = timeseries[loind+overlap:hiind] elif (chunknum==numchunks-1): # end of the timeseries chunk = Num.zeros(worklen, dtype=Num.float32) chunk[:-overlap] = timeseries[loind:hiind-overlap] else: chunk = timeseries[loind:hiind] # Make a set with the current block numbers lowblock = blocks_per_chunk * chunknum currentblocks = set(Num.arange(blocks_per_chunk) + lowblock) localgoodblocks = Num.asarray(list(currentblocks - bad_blocks)) - lowblock # Search this chunk if it is not all bad if len(localgoodblocks): # This is the good part of the data (end effects removed) goodchunk = chunk[overlap:-overlap] # need to pass blocks/chunklen, localgoodblocks # dm_candlist, dt, opts.threshold to cython routine # Search non-downsampled data first # NOTE: these nonzero() calls are some of the most # expensive calls in the program. Best bet would # probably be to simply iterate over the goodchunk # in C and append to the candlist there. hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen # Add the candidates (which are sorted by bin) for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt dm_candlist.append(candidate(info.DM, val, time, bin, 1)) # Prepare our data for the convolution if useffts: fftd_chunk = rfft(chunk, -1) # Now do the downsampling... for ii, downfact in enumerate(downfacts): if useffts: # Note: FFT convolution is faster for _all_ downfacts, even 2 goodchunk = fft_convolve(fftd_chunk, fftd_kerns[ii], overlap, -overlap) else: # The normalization of this kernel keeps the post-smoothing RMS = 1 kernel = Num.ones(downfact, dtype=Num.float32) / \ Num.sqrt(downfact) smoothed_chunk = scipy.signal.convolve(chunk, kernel, 1) goodchunk = smoothed_chunk[overlap:-overlap] #hibins = Num.nonzero(goodchunk>opts.threshold)[0] hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen hibins = hibins.tolist() hivals = hivals.tolist() # Now walk through the new candidates and remove those # that are not the highest but are within downfact/2 # bins of a higher signal pulse hibins, hivals = prune_related1(hibins, hivals, downfact) # Insert the new candidates into the candlist, but # keep it sorted... for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt bisect.insort(dm_candlist, candidate(info.DM, val, time, bin, downfact)) # Now walk through the dm_candlist and remove the ones that # are within the downsample proximity of a higher # signal-to-noise pulse dm_candlist = prune_related2(dm_candlist, downfacts) print " Found %d pulse candidates"%len(dm_candlist) # Get rid of those near padding regions if info.breaks: prune_border_cases(dm_candlist, offregions) # Write the pulses to an ASCII output file if len(dm_candlist): conn = MySQLdb.connect (host = "localhost", user = "******", passwd = "ibmthinkpad", db = "flyseye") cursor = conn.cursor () #dm_candlist.sort(cmp_sigma) outfile.write("# DM Sigma Time (s) Sample Downfact\n") for cand in dm_candlist: outfile.write(str(cand)) sql = "INSERT INTO presto (obsid, dm, sigma, time, sample, downfact) VALUES (%10d, %7.2f, %7.2f, %13.6f, %10d, %3d)" % (opts.obsid, cand.DM, cand.sigma, cand.time, cand.bin, cand.downfact) cursor.execute (sql) cursor.close () conn.close () outfile.close() #row = cursor.fetchone () #print "server version:", row[0] # Add these candidates to the overall candidate list for cand in dm_candlist: candlist.append(cand) num_v_DMstr[DMstr] = len(dm_candlist) if (opts.makeplot): # Step through the candidates to make a SNR list DMs.sort() maxsnr = 0.0 snrs = [] for cand in candlist: snrs.append(cand.sigma) #print " snr%f"%cand.sigma if cand.sigma > maxsnr and cand.sigma < 2e9: maxsnr = cand.sigma #print "update %f"%cand.sigma maxsnr = min(maxsnr,2e9) maxsnr = int(maxsnr) + 3 #print " Found %d pulse candidates"%maxsnr # Generate the SNR histogram snrs = Num.asarray(snrs) (num_v_snr, lo_snr, d_snr, num_out_of_range) = \ scipy.stats.histogram(snrs, int(maxsnr-opts.threshold+1), [opts.threshold, maxsnr]) #print " Found %d pulse candidates"%maxsnr snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \ + lo_snr + 0.5*d_snr num_v_snr = num_v_snr.astype(Num.float32) num_v_snr[num_v_snr==0.0] = 0.001 # Generate the DM histogram num_v_DM = Num.zeros(len(DMs)) for ii, DM in enumerate(DMs): num_v_DM[ii] = num_v_DMstr["%.2f"%DM] DMs = Num.asarray(DMs) # open the plot device short_filenmbase = filenmbase[:filenmbase.find("_DM")] if opts.T_end > obstime: opts.T_end = obstime if pgplot_device: ppgplot.pgopen(pgplot_device) else: if (opts.T_start > 0.0 or opts.T_end < obstime): ppgplot.pgopen(short_filenmbase+'_%.0f-%.0fs_singlepulse.ps/VPS'% (opts.T_start, opts.T_end)) else: ppgplot.pgopen(short_filenmbase+'_singlepulse.ps/VPS') ppgplot.pgpap(7.5, 1.0) # Width in inches, aspect ppgplot.pgscf(2) # plot the SNR histogram ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87) ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5), Num.log10(2*max(num_v_snr))) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1) # plot the DM histogram ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87) ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, 0.0, 1.1*max(num_v_DM)) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(DMs, num_v_DM, 1) # plot the SNR vs DM plot ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87) ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, opts.threshold, maxsnr) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgsch(1.0) cand_ts = Num.zeros(len(candlist), dtype=Num.float32) cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32) cand_DMs = Num.zeros(len(candlist), dtype=Num.float32) for ii, cand in enumerate(candlist): cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \ cand.time, cand.sigma, cand.DM ppgplot.pgpt(cand_DMs, cand_SNRs, 20) # plot the DM vs Time plot ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52) ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs)-0.5, max(DMs)+0.5) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") # Circles are symbols 20-26 in increasing order snr_range = 12.0 cand_symbols = (cand_SNRs-opts.threshold)/snr_range * 6.0 + 20.5 cand_symbols = cand_symbols.astype(Num.int32) cand_symbols[cand_symbols>26] = 26 for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols==ii)[0] ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii) # Now fill the infomation area ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97) ppgplot.pgsch(1.0) ppgplot.pgmtxt('T', 0.5, 0.0, 0.0, "Single pulse results for '%s'"%short_filenmbase) ppgplot.pgsch(0.8) # first row ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\ info.object) ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):') ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA) ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f'%orig_N) # second row ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\ info.telescope) ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):') ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC) ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\ (orig_dt*1e6)) # third row if info.instrument.find("pigot") >= 0: instrument = "Spigot" else: instrument = info.instrument ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s'%instrument) if (info.bary): ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f'%info.epoch) else: ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f'%info.epoch) ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\ ((info.numchan/2-0.5)*info.chan_width+info.lofreq)) ppgplot.pgiden() ppgplot.pgend()