Пример #1
0
def compute_reachable_cache(run_dir, args):
    print '%s: calculating reachable cache' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)

    t_max = args['t_max']

    G = store['G']
    G.cache_soonest_arrivals()

    all_edges = set()
    for v_i in G.nodes:
        for v_j in G.edge_dict[v_i]:
            all_edges.update(G.edge_dict[v_i][v_j])

    reachable_cache = {}
    for v_i in G.nodes:
        print v_i
        for v_j in G.nodes:
            for b in range(t_max+1): # HACK! assumes integer edge length and start time of zero!
                reachable = set()
                for e in all_edges:
                    if (G.soonest_arrival(v_i, e.v_i) + e.length()
                        + G.soonest_arrival(e.v_j, v_j)) <= b:
                        reachable.update(e.samples())
                reachable_cache[(v_i, v_j, b)] = reachable

    store['reachable_cache'] = reachable_cache
Пример #2
0
    def __init__(self):
        gladefile = os.path.join(roslib.packages.get_pkg_dir('pplan'), "glade/pplan_gui.glade")
        self.windowname = "main_window"
        self.w_tree = gtk.glade.XML(gladefile, self.windowname)
        dic = {'on_main_window_destroy' : gtk.main_quit,
               'on_get_data_button_clicked' : self.get_data,
               'on_make_graph_button_clicked' : self.make_graph,
               'on_calc_kernel_button_clicked' : self.calc_kernel,
               'on_plan_path_button_clicked' : self.plan_path,
               }
        self.w_tree.signal_autoconnect(dic)

        main_window = self.w_tree.get_widget('main_window')
                                        
        # setup matplotlib stuff on first notebook page (empty graph)
        self.figure = Figure(figsize=(6,4), dpi=72)
        self.axis = self.figure.add_subplot(111)
        self.axis.set_xlabel('Longitude')
        self.axis.set_ylabel('Latitude')
        self.axis.set_title('')
        self.axis.grid(True)
        self.canvas = FigureCanvasGTK(self.figure) # a gtk.DrawingArea
        self.canvas.show()
        self.graphview = self.w_tree.get_widget('vbox1')
        self.graphview.pack_start(self.canvas, True, True)
        self.nav_bar = NavigationToolbar(self.canvas, main_window)
        self.graphview.pack_start(self.nav_bar, False, True)

        run_dir = sys.argv[1]
        self.settings = pplan.PPlanSettings(run_dir)
        # initialize the data directory, if not done already
        self.store = ppas.Store(self.settings.data_dir)

        self.plot_graph()
        self.plot_path()
Пример #3
0
def calc_emse(run_dir):
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)
    P = store['P']
    G = store['G']
    objective = ppas.objectives.EMSEObjective(store['kmat'], settings.planner_properties['sigma_n'])
    start_t = ppas.datetime_to_seconds(settings.roi_properties['starttime'])
    samples = ppas.graph.path_samples(store['P'], start_t)
    print '%s: EMSE:' % run_dir, objective.f(samples)
Пример #4
0
def make_ma(run_dir):
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)
    P = store['P']
    G = store['G']
    waypoints = []
    waypoints.append((G.node_points[P[0].v_i][0], G.node_points[P[0].v_i][1]))
    for e in P:
        waypoints.append((G.node_points[e.v_j][0], G.node_points[e.v_j][1]))
    ppas.glider.make_ma(waypoints, os.path.join(run_dir, 'waypoints.ma'))
Пример #5
0
def calc_cov(run_dir, args):
    print '%s: calculating empirical covariance matrix' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)
    if settings.training_properties['kernel_type'] == 'weighted_rbf':
        kernel = ppas.gp.kernels.WeightedRBF()
    elif settings.training_properties['kernel_type'] == 'rbf':
        kernel = ppas.gp.kernels.RBF()
    else:
        diee_unknown_kernel_type___
    
    points = store['points']
    kmat = kernel.value(settings.training_properties['hyper_params'], points, points)
    store['kmat'] = kmat
Пример #6
0
def plan_path_bruteforce(run_dir, args):
    print '%s: planning path using brute force' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)

    # create the objective class
    objective = ppas.objectives.EMSEObjective(store['kmat'], settings.planner_properties['sigma_n'])
    obj_val0 = objective.f(set())
    
    bnb_planner = ppas.bnb.BranchAndBound(
        store['G'],
        store['Xi_pilot'],
        objective,
        reachable_cache=None,
        use_bnb=False,
        use_smart_order=False
        )

    print 'BF planning path from %d to %d' % ( 
        settings.planner_properties['start_node'],
        settings.planner_properties['end_node'])

    t0 = time.time()
    P, obj_val = bnb_planner.plan_with_horizon(
        settings.planner_properties['start_node'],
        settings.planner_properties['end_node'],
        settings.planner_properties['start_t'],
        settings.planner_properties['end_t'],
        horizon=args['horizon']
        )
    runtime = time.time() - t0

    result = {
        'P' : P,
        'obj_val' : obj_val,
        'obj_val0' : obj_val0,
        'objective_function' : 'emse',
        'runtime' : runtime
        }
    save_result(store, 'bruteforce', args, result)
    
    if P == None:
        print '%s: Path planner failed to find a feasible path' % run_dir
    else:
        print '%s: Objective achieved by path: %f' % (run_dir, obj_val)
        print P[0].v_i, P[-1].v_j
Пример #7
0
def plan_path_bnbmulti(run_dir, args):
    print '%s: planning path using bnb multi' % run_dir
    print args
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)

    G = store['G']
    reachable_cache = store['reachable_cache']

    # create the objective class
    objective = ppas.objectives.EMSEObjective(store['kmat'], settings.planner_properties['sigma_n'])
    obj_val0 = objective.f(set())
    
    # create the planner
    bnb_multi_planner = ppas.bnb_multi.BranchAndBoundMulti(
        G,
        pilot_samples = set(),
        objective = objective,
        reachable_cache = reachable_cache,
        args = args,
        )

    t0 = time.time()
    planner_result = bnb_multi_planner.plan()
    paths = planner_result['paths']
    runtime = time.time() - t0

    obj_val = objective.f(set.union(*[ppas.graph.path_samples(P) for P in paths]))

    result = {
        'paths' : paths,
        'planner_result' : planner_result,
        'obj_val' : obj_val,
        'obj_val0' : obj_val0,
        'objective_function' : 'emse',
        'runtime' : runtime,
        'objfunc_evals' : objective.num_evaluations
        }
    save_result(store, 'bnb_multi', args, result)
    
    if P == None:
        print '%s: Path planner failed to find a feasible path' % run_dir
    else:
        print '%s: Objective achieved by path: %f' % (run_dir, obj_val)
        print P[0].v_i, P[-1].v_j
Пример #8
0
def calc_emp_cov(run_dir, args):
    print '%s: calculating empirical covariance matrix' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)
    training_store = ppas.Store(os.path.join(settings.data_dir, 'training_data'))
    
    points = store['points']
    qoi = settings.roi_properties['qoi']
    training_dates = sorted(training_store.keys())
    training_array = np.zeros((len(points), len(training_dates)))

    exp_start = settings.roi_properties['starttime']
    exp_midnight = datetime.datetime(exp_start.year, exp_start.month, exp_start.day, 0, 0)
    
    # build array of training data
    for date_i in range(len(training_dates)):
        date_str = training_dates[date_i]
        data = training_store[date_str]
        data_year, data_month, data_day = [int(s) for s in date_str.split('-')]
        data_midnight = datetime.datetime(data_year, data_month, data_day, 0, 0)
        if exp_start.hour < 13:
            exp_midnight += datetime.timedelta(days=1)
        time_offset = ppas.datetime_to_seconds(exp_midnight) - ppas.datetime_to_seconds(data_midnight)
        for p_i in range(len(points)):
            p = points[p_i]
            t = p[3] - time_offset
            val = ppas.roms.get_value(data, p[0], p[1], p[2], t, qoi, interp='linear')
            training_array[p_i,date_i] = val

    # filter out bad data
    if qoi == 'salt':
        varmin, varmax = 30., 40.
    elif qoi == 'temp':
        varmin, varmax = 0., 100.
    else:
        dieee_unknown_var_type___
    good_columns = ((training_array > varmin) & ( training_array < varmax)).all(axis=0)
    good_training_data = training_array[:,good_columns]
    store['good_training_data'] = good_training_data

    # calculate covariance matrix
    kmat = np.cov(good_training_data)
    store['kmat'] = kmat
Пример #9
0
def make_graph(run_dir, args):
    global pplan
    print '%s: making graph' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)
    graph_type = settings.graph_properties['graph_type']
    if graph_type == 'edgetime_equilateral':
        import pplan.makegraph_edgetime_equilateral
        G, points = pplan.makegraph_edgetime_equilateral.makegraph_edgetime_equilateral(
            settings.roi_properties, settings.graph_properties)
    elif graph_type == 'static_equilateral':
        import pplan.makegraph_static_equilateral
        G, points = pplan.makegraph_static_equilateral.makegraph_static_equilateral(
            settings.roi_properties, settings.graph_properties)
    else:
        crash_bad_graph_type_

    G.cache_soonest_arrivals(settings.graph_properties['time_list'])
    store['G'] = G
    store['points'] = points
    store['Xi_pilot'] = set()
Пример #10
0
def plan_path_grg(run_dir, args):
    print '%s: planning path using GRG' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)

    # create the objective class
    objective = ppas.objectives.EMSEObjective(store['kmat'], settings.planner_properties['sigma_n'])
    obj_val0 = objective.f(set())
    
    # plan path
    t0 = time.time()
    P, obj_val, obj = ppas.pplan.grg_equilateral(
        store['G'], # graph
        settings.planner_properties['start_node'], # start node
        settings.planner_properties['end_node'], # end node
        settings.planner_properties['start_t'], # start time
        settings.planner_properties['end_t'], # end time
        settings.planner_properties['max_recursions'], # recursion level
        objective, # objective function class
        store['Xi_pilot'],
        settings.planner_properties['max_recursions'])
    runtime = time.time() - t0

    result = {
        'P' : P,
        'obj_val' : -(-obj_val0 - obj_val), # convert reduction in EMSE to -EMSE
        'obj_val0' : obj_val0,
        'objective_function' : 'emse',
        'runtime' : runtime
        }
    save_result(store, 'grg', args, result)
        
    if P == None:
        print '%s: Path planner failed to find a feasible path' % run_dir
    else:
        print '%s: Objective achieved by path: %f' % (run_dir, obj_val)
        # save result
        store['P'] = P
Пример #11
0
def get_data(run_dir):
    print '%s: getting data' % run_dir
    settings = pplan.PPlanSettings(run_dir)
    store = ppas.Store(settings.data_dir)

    rp = settings.roi_properties
    dates = settings.training_properties['dates']
    for date_i in range(len(dates)):
        date = dates[date_i]
        try:
            # connect to ROMS
            dset = ppas.roms.open_dataset(date)
            
            # get the data
            data = ppas.roms.get_data(
                dset, rp['lat0']-0.03, rp['lat1']+0.03, rp['lon0']-0.03, rp['lon1']+0.03,
                rp['depth']-10., rp['depth']+10.)

            store['training_data/' + str(date)] = data
        except Exception, e:
            print 'No ROMS data available for %s' % str(date)
            print e
        print '%s: Downloaded data for %s (%d/%d)' % (run_dir, str(date), date_i+1, len(dates))
        time.sleep(0.1)
Пример #12
0
import roslib; roslib.load_manifest('pplan')
import sys, os.path
import numpy as np
from matplotlib import pyplot as plt
import ppas, pplan

# load settings
run_dir = sys.argv[1]
result_num = sys.argv[2]
settings = pplan.PPlanSettings(run_dir)
store = ppas.Store(settings.data_dir)

# setup plot
fig = plt.figure()
ax = fig.add_subplot(111)

G = store['G']
if not 'bonelli' in run_dir:
    G.node_points = G.node_points[:,::-1]
graph_plotter = ppas.plot.GraphPlotter(G, 'xy')
graph_plotter.plot(ax=plt.gca(), nodenames=True, text_xoff=0.00005, text_yoff=0.00005)

results = store[os.path.join('results/%s/result' % result_num)]
graph_plotter.plot_path(results['P'], ax)

plt.show()
#!/usr/bin/env python
import roslib
roslib.load_manifest('pplan')
import sys, time, os, os.path, multiprocessing, datetime, signal
import numpy as np
from scipy import linalg
from matplotlib import pyplot as plt

import pplan, ppas

settings = pplan.PPlanSettings(sys.argv[1])
store = ppas.Store(settings.data_dir)
G = store['G']
points = store['points']
good_training_data = store['good_training_data']

for sp0 in G.node_points:
    point_indices = []
    for p_i in range(len(points)):
        d = linalg.norm(points[p_i][:2] - sp0)
        #print p_i, d
        if d < 0.001:
            point_indices.append(p_i)
    qoi_means = good_training_data.mean(axis=1)
    qoi_var = good_training_data.var(axis=1)

    times = (points[point_indices, 3] - points[0, 3]) / 3600.
    plt.plot(times, qoi_means[point_indices], '-')
    #plt.plot(times, qoi_var[point_indices], '-')
plt.show()