Пример #1
0
def minimal():
    '''
    A minimal working example to perform a BH binary inspiral

    **Run using**

        import precession.test
        precession.test.minimal()
    '''

    t0 = time.time()
    q = 0.75  # Mass ratio
    chi1 = 0.5  # Primary's spin magnitude
    chi2 = 0.95  # Secondary's spin magnitude
    print "Take a BH binary with q=%.2f, chi1=%.2f and chi2=%.2f" % (q, chi1,
                                                                     chi2)
    sep = numpy.logspace(10, 1, 10)  # Output separations
    t1 = numpy.pi / 3.  # Spin orientations at r_vals[0]
    t2 = 2. * numpy.pi / 3.
    dp = numpy.pi / 4.
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
    t1v, t2v, dpv = precession.evolve_angles(t1, t2, dp, sep, q, S1, S2)
    print "Perform BH binary inspiral"
    print "log10(r/M) \t theta1 \t theta2 \t deltaphi"
    for r, t1, t2, dp in zip(numpy.log10(sep), t1v, t2v, dpv):
        print "%.0f \t\t %.3f \t\t %.3f \t\t %.3f" % (r, t1, t2, dp)
    t = time.time() - t0
    print "Executed in %.3fs" % t
Пример #2
0
def _get_kicks(amag1, amag2, q, Nsamps, maxkick):

    v_kicks = []

    M, m1, m2, S1, S2 = pr.get_fixed(q, amag1, amag2)

    t1 = np.random.uniform(-1, 1, Nsamps)
    t2 = np.random.uniform(-1, 1, Nsamps)
    phi = np.random.uniform(0, 2 * np.pi, Nsamps)
    for ii in range(Nsamps):
        kick = pr.finalkick(np.arccos(t1[ii]),
                            np.arccos(t2[ii]),
                            phi[ii],
                            q,
                            S1,
                            S2,
                            maxkick=maxkick,
                            kms=True)

        v_kicks.append(kick)

    return np.array(v_kicks)
def test():
    t0 = time.time()
    q = 0.75  # Mass ratio
    chi1 = 0.5  # Primary’s spin magnitude
    chi2 = 0.95  # Secondary’s spin magnitude
    print("Take a BH binary with q=%.2f, chi1=%.2f and ,→ chi2=%.2f" %
          (q, chi1, chi2))
    sep = numpy.logspace(10, 1, 10)  # Output separations

    t1 = numpy.pi / 3.  # Spin orientations at r_vals[0]
    t2 = 2. * numpy.pi / 3.
    dp = numpy.pi / 4.
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
    freq = [rtof(s, M) for s in sep]
    print(ftor(20, M))
    t1v, t2v, dpv = precession.evolve_angles(t1, t2, dp, sep, q, S1, S2)
    print("Perform BH binary inspiral")
    print("log10(r/M) \t freq(Hz) \t theta1 \t theta2 \t deltaphi")
    for r, f, t1, t2, dp in zip(numpy.log10(sep), freq, t1v, t2v, dpv):
        print("%.0f \t\t %.3f \t\t %.3f \t\t %.3f \t\t %.3f" %
              (r, f, t1, t2, dp))
    t = time.time() - t0
    print("Executed in %.3fs" % t)
Пример #4
0
print("##########################")
fig0, ax0 = plt.subplots(2, 1, sharex=True)
fig1, ax1 = plt.subplots(1, 1)
fig2, ax2 = plt.subplots(2, 1, sharex=True)
fig2.suptitle(r"$\alpha, \beta$")
fig0.suptitle(r"$S, \beta$")

t0 = time.time()
for i in range(3):
    q = np.random.uniform(0.5, 0.9)  # Mass ratio
    chi1 = np.random.uniform(0., 1.)  # Primary’s spin magnitude
    chi2 = np.random.uniform(0., 1.)  # Secondary’s spin magnitude
    print("Take a BH binary with q={}, chi1={} and chi2={}".format(
        q, chi1, chi2))

    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
    print("Masses and spins: ", M, m1, m2, S1, S2)

    #separations
    ri = 500 * M  # Initial separation.
    rf = 1. * M  # Final separation.
    sep = np.linspace(ri, rf, 10000)  # Output separations

    #random angles
    t1 = np.random.uniform(0, np.pi)  # theta 1
    t2 = np.random.uniform(0, np.pi)  # theta 2
    dp = np.random.uniform(-np.pi, np.pi)  #delta phi
    xi, J, S = precession.from_the_angles(t1, t2, dp, q, S1, S2, sep[0])

    print(xi, S, J, q, S1, S2, sep[0])
    Jvec, Lvec, S1vec, S2vec, Svec = precession.Jframe_projection(
Пример #5
0
def parameter_selection():
    '''
    Selection of consistent parameters to describe the BH spin orientations, both at finite and infinitely large separation. Compute some quantities which characterize the spin-precession dynamics, such as morphology, precessional period and resonant angles.
    All quantities are given in total-mass units c=G=M=1.

    **Run using**

        import precession.test
        precession.test.parameter_selection()
    '''

    print "\n *Parameter selection at finite separations*"
    q = 0.8  # Must be q<=1. Check documentation for q=1.
    chi1 = 1.  # Must be chi1<=1
    chi2 = 1.  # Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    print "We study a binary with\n\tq=%.3f  m1=%.3f  m2=%.3f\n\tchi1=%.3f  S1=%.3f\n\tchi2=%.3f  S2=%.3f" % (
        q, m1, m2, chi1, S1, chi2, S2)
    r = 100 * M  # Must be r>10M for PN to be valid
    print "at separation\n\tr=%.3f" % r
    xi_min, xi_max = precession.xi_lim(q, S1, S2)
    Jmin, Jmax = precession.J_lim(q, S1, S2, r)
    Sso_min, Sso_max = precession.Sso_limits(S1, S2)
    print "The geometrical limits on xi,J and S are\n\t%.3f<=xi<=%.3f\n\t%.3f<=J<=%.3f\n\t%.3f<=S<=%.3f" % (
        xi_min, xi_max, Jmin, Jmax, Sso_min, Sso_max)
    J = (Jmin + Jmax) / 2.
    print "We select a value of J\n\tJ=%.3f " % J
    St_min, St_max = precession.St_limits(J, q, S1, S2, r)
    print "This constrains the range of S to\n\t%.3f<=S<=%.3f" % (St_min,
                                                                  St_max)
    xi_low, xi_up = precession.xi_allowed(J, q, S1, S2, r)
    print "The allowed range of xi is\n\t%.3f<=xi<=%.3f" % (xi_low, xi_up)
    xi = (xi_low + xi_up) / 2.
    print "We select a value of xi\n\txi=%.3f" % xi
    test = (J >= min(precession.J_allowed(xi, q, S1, S2, r))
            and J <= max(precession.J_allowed(xi, q, S1, S2, r)))
    print "Is our couple (xi,J) consistent?", test
    Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r)
    print "S oscillates between\n\tS-=%.3f\n\tS+=%.3f" % (Sb_min, Sb_max)
    S = (Sb_min + Sb_max) / 2.
    print "We select a value of S between S- and S+\n\tS=%.3f" % S
    t1, t2, dp, t12 = precession.parametric_angles(S, J, xi, q, S1, S2, r)
    print "The angles describing the spin orientations are\n\t(theta1,theta2,DeltaPhi)=(%.3f,%.3f,%.3f)" % (
        t1, t2, dp)
    xi, J, S = precession.from_the_angles(t1, t2, dp, q, S1, S2, r)
    print "From the angles one can recovery\n\t(xi,J,S)=(%.3f,%.3f,%.3f)" % (
        xi, J, S)

    print "\n *Features of spin precession*"
    t1_dp0, t2_dp0, t1_dp180, t2_dp180 = precession.resonant_finder(
        xi, q, S1, S2, r)
    print "The spin-orbit resonances for these values of J and xi are\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=0\n\t(theta1,theta2)=(%.3f,%.3f) for DeltaPhi=pi" % (
        t1_dp0, t2_dp0, t1_dp180, t2_dp180)
    tau = precession.precession_period(xi, J, q, S1, S2, r)
    print "We integrate dt/dS to calculate the precessional period\n\ttau=%.3f" % tau
    alpha = precession.alphaz(xi, J, q, S1, S2, r)
    print "We integrate Omega*dt/dS to find\n\talpha=%.3f" % alpha
    morphology = precession.find_morphology(xi, J, q, S1, S2, r)
    if morphology == -1: labelm = "Librating about DeltaPhi=0"
    elif morphology == 1: labelm = "Librating about DeltaPhi=pi"
    elif morphology == 0: labelm = "Circulating"
    print "The precessional morphology is: " + labelm
    sys.stdout = os.devnull  # Ignore warnings
    phase, xi_transit_low, xi_transit_up = precession.phase_xi(J, q, S1, S2, r)
    sys.stdout = sys.__stdout__  # Restore warnings
    if phase == -1: labelp = "a single DeltaPhi~pi phase"
    elif phase == 2: labelp = "two DeltaPhi~pi phases, a Circulating phase"
    elif phase == 3:
        labelp = "a DeltaPhi~0, a Circulating, a DeltaPhi~pi phase"
    print "The coexisting phases are: " + labelp

    print "\n *Parameter selection at infinitely large separation*"
    print "We study a binary with\n\tq=%.3f  m1=%.3f  m2=%.3f\n\tchi1=%.3f  S1=%.3f\n\tchi2=%.3f  S2=%.3f" % (
        q, m1, m2, chi1, S1, chi2, S2)
    print "at infinitely large separation"
    kappainf_min, kappainf_max = precession.kappainf_lim(S1, S2)
    print "The geometrical limits on xi and kappa_inf are\n\t%.3f<=xi<=%.3f\n\t %.3f<=kappa_inf<=%.3f" % (
        xi_min, xi_max, kappainf_min, kappainf_max)
    print "We select a value of xi\n\txi=%.3f" % xi
    kappainf_low, kappainf_up = precession.kappainf_allowed(xi, q, S1, S2)
    print "This constrains the range of kappa_inf to\n\t%.3f<=kappa_inf<=%.3f" % (
        kappainf_low, kappainf_up)
    kappainf = (kappainf_low + kappainf_up) / 2.
    print "We select a value of kappa_inf\n\tkappa_inf=%.3f" % kappainf
    test = (xi >= min(precession.xiinf_allowed(kappainf, q, S1, S2))
            and xi <= max(precession.xiinf_allowed(kappainf, q, S1, S2)))
    print "Is our couple (xi,kappa_inf) consistent?", test
    t1_inf, t2_inf = precession.thetas_inf(xi, kappainf, q, S1, S2)
    print "The asymptotic (constant) values of theta1 and theta2 are\n\t(theta1_inf,theta2_inf)=(%.3f,%.3f)" % (
        t1_inf, t2_inf)
    xi, kappainf = precession.from_the_angles_inf(t1_inf, t2_inf, q, S1, S2)
    print "From the angles one can recovery\n\t(xi,kappa_inf)=(%.3f,%.3f)" % (
        xi, kappainf)
Пример #6
0
def timing():
    '''
    This examples compare the numerical performance of `precession.orbit_angles`
    and `precession.evolve_angles`. Computation is performed twice, first using
    all the available CPUs and then explicitely disabling the code
    parallelization.
    
    **Run using**

        import precession.test
        precession.test.timing()
    '''

    BHsample = []  #  Construct a sample of BH binaries
    N = 100
    for i in range(N):
        q = random.uniform(0, 1)
        chi1 = random.uniform(0, 1)
        chi2 = random.uniform(0, 1)
        M, m1, m2, S1, S2 = precession.get_fixed(q, chi1, chi2)
        t1 = random.uniform(0, numpy.pi)
        t2 = random.uniform(0, numpy.pi)
        dp = random.uniform(0, 2. * numpy.pi)
        BHsample.append([q, S1, S2, t1, t2, dp])
    q_vals, S1_vals, S2_vals, t1i_vals, t2i_vals, dpi_vals = zip(
        *BHsample)  # Traspose python list

    ri = 1e4 * M  # Initial separation
    rf = 10 * M  # Final separation
    r_vals = [ri, rf]  # Intermediate output separations not needed here

    print " *Integrating a sample of N=%.0f BH binaries from ri=%.0f to rf=%.0f using %.0f CPUs*" % (
        N, ri, rf, multiprocessing.cpu_count()
    )  # Parallel computation used by default
    t0 = time.time()
    precession.orbit_angles(t1i_vals, t2i_vals, dpi_vals, r_vals, q_vals,
                            S1_vals, S2_vals)
    t = time.time() - t0
    print "Orbit-averaged: parallel integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" % (
        t, t / N)
    t0 = time.time()
    precession.evolve_angles(t1i_vals, t2i_vals, dpi_vals, r_vals, q_vals,
                             S1_vals, S2_vals)
    t = time.time() - t0
    print "Precession-averaged: parallel integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" % (
        t, t / N)

    precession.empty_temp()  # Remove previous checkpoints
    precession.CPUs = 1  # Force serial computation
    print " *Integrating a sample of N=%.0f BH binaries from ri=%.0f to rf=%.0f using %.0f CPU*" % (
        len(BHsample), ri, rf, precession.CPUs)
    t0 = time.time()
    precession.orbit_angles(t1i_vals, t2i_vals, dpi_vals, r_vals, q_vals,
                            S1_vals, S2_vals)
    t = time.time() - t0
    print "Orbit-averaged: serial integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" % (
        t, t / N)
    t0 = time.time()
    precession.evolve_angles(t1i_vals, t2i_vals, dpi_vals, r_vals, q_vals,
                             S1_vals, S2_vals)
    t = time.time() - t0
    print "Precession-averaged: serial integrations\n\t total time t=%.3fs\n\t time per binary t/N=%.3fs" % (
        t, t / N)
    precession.empty_temp()  # Remove previous checkpoints
Пример #7
0
def compare_evolutions():
    '''
    Compare precession averaged and orbit averaged integrations. Plot the
    evolution of xi, J, S and their relative differences between the two
    approaches. Since precession-averaged estimates of S require a random
    sampling, this plot will look different every time this routine is executed.
    Output is saved in ./spin_angles.pdf.
    
    **Run using**

        import precession.test
        precession.test.compare_evolutions()
    '''

    fig = pylab.figure(figsize=(6, 6))  # Create figure object and axes
    L, Ws, Wm, G = 0.85, 0.15, 0.3, 0.03  # Sizes
    ax_Sd = fig.add_axes([0, 0, L, Ws])  # bottom-small
    ax_S = fig.add_axes([0, Ws, L, Wm])  # bottom-main
    ax_Jd = fig.add_axes([0, Ws + Wm + G, L, Ws])  # middle-small
    ax_J = fig.add_axes([0, Ws + Ws + Wm + G, L, Wm])  # middle-main
    ax_xid = fig.add_axes([0, 2 * (Ws + Wm + G), L, Ws])  # top-small
    ax_xi = fig.add_axes([0, Ws + 2 * (Ws + Wm + G), L, Wm])  # top-main

    q = 0.8  # Mass ratio. Must be q<=1.
    chi1 = 0.6  # Primary spin. Must be chi1<=1
    chi2 = 1.  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    ri = 100. * M  # Initial separation.
    rf = 10. * M  # Final separation.
    r_vals = numpy.linspace(ri, rf, 1001)  # Output requested
    Ji = 2.24  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.5  # Effective spin: xi_low<xi<xi_up as given by xi_allowed

    Jf_P = precession.evolve_J(xi, Ji, r_vals, q, S1, S2)  # Pr.av. integration
    Sf_P = [
        precession.samplingS(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P[0::10], r_vals[0::10])
    ]  # Resample S (reduce output for clarity)
    Sb_min, Sb_max = zip(*[
        precession.Sb_limits(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P, r_vals)
    ])  # Envelopes
    S = numpy.average([precession.Sb_limits(xi, Ji, q, S1, S2,
                                            ri)])  # Initialize S
    Jf_O, xif_O, Sf_O = precession.orbit_averaged(Ji, xi, S, r_vals, q, S1,
                                                  S2)  # Orb.av. integration

    Pcol, Ocol, Dcol = 'blue', 'red', 'green'
    Pst, Ost = 'solid', 'dashed'
    ax_xi.axhline(xi, c=Pcol, ls=Pst, lw=2)  # Plot xi, pr.av. (constant)
    ax_xi.plot(r_vals, xif_O, c=Ocol, ls=Ost, lw=2)  # Plot xi, orbit averaged
    ax_xid.plot(r_vals, (xi - xif_O) / xi * 1e11, c=Dcol,
                lw=2)  # Plot xi deviations (rescaled)
    ax_J.plot(r_vals, Jf_P, c=Pcol, ls=Pst, lw=2)  # Plot J, pr.av.
    ax_J.plot(r_vals, Jf_O, c=Ocol, ls=Ost, lw=2)  # Plot J, orb.av
    ax_Jd.plot(r_vals, (Jf_P - Jf_O) / Jf_O * 1e3, c=Dcol,
               lw=2)  # Plot J deviations (rescaled)
    ax_S.scatter(r_vals[0::10], Sf_P, facecolor='none',
                 edgecolor=Pcol)  # Plot S, pr.av. (resampled)
    ax_S.plot(r_vals, Sb_min, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sb_max, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sf_O, c=Ocol, ls=Ost, lw=2)  # Plot S, orb.av (evolved)
    ax_Sd.plot(r_vals[0::10], (Sf_P - Sf_O[0::10]) / Sf_O[0::10], c=Dcol,
               lw=2)  # Plot S deviations

    # Options for nice plotting
    for ax in [ax_xi, ax_xid, ax_J, ax_Jd, ax_S, ax_Sd]:
        ax.set_xlim(ri, rf)
        ax.yaxis.set_label_coords(-0.16, 0.5)
        ax.spines['left'].set_lw(1.5)
        ax.spines['right'].set_lw(1.5)
    for ax in [ax_xi, ax_J, ax_S]:
        ax.spines['top'].set_lw(1.5)
    for ax in [ax_xid, ax_Jd, ax_Sd]:
        ax.axhline(0, c='black', ls='dotted')
        ax.spines['bottom'].set_lw(1.5)
    for ax in [ax_xid, ax_J, ax_Jd, ax_S]:
        ax.set_xticklabels([])
    ax_xi.set_ylim(-0.55, -0.45)
    ax_J.set_ylim(0.4, 2.3)
    ax_S.set_ylim(0.24, 0.41)
    ax_xid.set_ylim(-0.2, 1.2)
    ax_Jd.set_ylim(-3, 5.5)
    ax_Sd.set_ylim(-0.7, 0.7)
    ax_xid.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_Jd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(2))
    ax_S.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.05))
    ax_Sd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_xi.xaxis.set_ticks_position('top')
    ax_xi.xaxis.set_label_position('top')
    ax_Sd.set_xlabel("$r/M$")
    ax_xi.set_xlabel("$r/M$")
    ax_xi.set_ylabel("$\\xi$")
    ax_J.set_ylabel("$J/M^2$")
    ax_S.set_ylabel("$S/M^2$")
    ax_xid.set_ylabel("$\\Delta\\xi/\\xi \;[10^{-11}]$")
    ax_Jd.set_ylabel("$\\Delta J/J \;[10^{-3}]$")
    ax_Sd.set_ylabel("$\\Delta S / S$")

    fig.savefig("compare_evolutions.pdf", bbox_inches='tight')  # Save pdf file
Пример #8
0
def PNwrappers():
    '''
    Wrappers of the PN integrators. Here we show how to perform orbit-averaged,
    precession-averaged and hybrid PN inspirals using the various wrappers
    implemented in the code. We also show how to estimate the final mass, spin
    and recoil of the BH remnant following a merger.


    **Run using**

        import precession.test
        precession.test.PNwrappers()
    '''

    q = 0.9  # Mass ratio. Must be q<=1.
    chi1 = 0.5  # Primary spin. Must be chi1<=1
    chi2 = 0.5  # Secondary spin. Must be chi2<=1
    print "We study a binary with\n\tq=%.3f, chi1=%.3f, chi2=%.3f" % (q, chi1,
                                                                      chi2)
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    ri = 1000 * M  # Initial separation.
    rf = 10. * M  # Final separation.
    rt = 100. * M  # Intermediate separation for hybrid evolution.
    r_vals = numpy.logspace(numpy.log10(ri), numpy.log10(rf),
                            10)  # Output requested
    t1i = numpy.pi / 4.
    t2i = numpy.pi / 4.
    dpi = numpy.pi / 4.  # Initial configuration
    xii, Ji, Si = precession.from_the_angles(t1i, t2i, dpi, q, S1, S2, ri)
    print "Configuration at ri=%.0f\n\t(xi,J,S)=(%.3f,%.3f,%.3f)\n\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" % (
        ri, xii, Ji, Si, t1i, t2i, dpi)

    print " *Orbit-averaged evolution*"
    print "Evolution ri=%.0f --> rf=%.0f" % (ri, rf)
    Jf, xif, Sf = precession.orbit_averaged(Ji, xii, Si, r_vals, q, S1, S2)
    print "\t(xi,J,S)=(%.3f,%.3f,%.3f)" % (xif[-1], Jf[-1], Sf[-1])
    t1f, t2f, dpf = precession.orbit_angles(t1i, t2i, dpi, r_vals, q, S1, S2)
    print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" % (t1f[-1], t2f[-1],
                                                           dpf[-1])
    Jvec, Lvec, S1vec, S2vec, Svec = precession.Jframe_projection(
        xii, Si, Ji, q, S1, S2, ri)
    Lxi, Lyi, Lzi = Lvec
    S1xi, S1yi, S1zi = S1vec
    S2xi, S2yi, S2zi = S2vec
    Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z = precession.orbit_vectors(
        Lxi, Lyi, Lzi, S1xi, S1yi, S1zi, S2xi, S2yi, S2zi, r_vals, q)
    print "\t(Lx,Ly,Lz)=(%.3f,%.3f,%.3f)\n\t(S1x,S1y,S1z)=(%.3f,%.3f,%.3f)\n\t(S2x,S2y,S2z)=(%.3f,%.3f,%.3f)" % (
        Lx[-1], Ly[-1], Lz[-1], S1x[-1], S1y[-1], S1z[-1], S2x[-1], S2y[-1],
        S2z[-1])

    print " *Precession-averaged evolution*"
    print "Evolution ri=%.0f --> rf=%.0f" % (ri, rf)
    Jf = precession.evolve_J(xii, Ji, r_vals, q, S1, S2)
    print "\t(xi,J,S)=(%.3f,%.3f,-)" % (xii, Jf[-1])
    t1f, t2f, dpf = precession.evolve_angles(t1i, t2i, dpi, r_vals, q, S1, S2)
    print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" % (t1f[-1], t2f[-1],
                                                           dpf[-1])
    print "Evolution ri=%.0f --> infinity" % ri
    kappainf = precession.evolve_J_backwards(xii, Jf[-1], rf, q, S1, S2)
    print "\tkappainf=%.3f" % kappainf
    Jf = precession.evolve_J_infinity(xii, kappainf, r_vals, q, S1, S2)
    print "Evolution infinity --> rf=%.0f" % rf
    print "\tJ=%.3f" % Jf[-1]

    print " *Hybrid evolution*"
    print "Prec.Av. infinity --> rt=%.0f & Orb.Av. rt=%.0f --> rf=%.0f" % (
        rt, rt, rf)
    t1f, t2f, dpf = precession.hybrid(xii, kappainf, r_vals, q, S1, S2, rt)
    print "\t(theta1,theta2,deltaphi)=(%.3f,%.3f,%.3f)" % (t1f[-1], t2f[-1],
                                                           dpf[-1])

    print " *Properties of the BH remnant*"
    Mfin = precession.finalmass(t1f[-1], t2f[-1], dpf[-1], q, S1, S2)
    print "\tM_f=%.3f" % Mfin
    chifin = precession.finalspin(t1f[-1], t2f[-1], dpf[-1], q, S1, S2)
    print "\tchi_f=%.3f, S_f=%.3f" % (chifin, chifin * Mfin**2)
    vkick = precession.finalkick(t1f[-1], t2f[-1], dpf[-1], q, S1, S2)
    print "\tvkick=%.5f" % (vkick)  # Geometrical units c=1
Пример #9
0
def phase_resampling():
    '''
    Precessional phase resampling. The magnidute of the total spin S is sampled
    according to |dS/dt|^-1, which correspond to a flat distribution in t(S).
    Output is saved in ./phase_resampling.pdf and data stored in
    `precession.storedir'/phase_resampling_.dat


    **Run using**

        import precession.test
        precession.test.phase_resampling()
    '''

    fig = pylab.figure(figsize=(6, 6))  #Create figure object and axes
    ax_tS = fig.add_axes([0, 0, 0.6, 0.6])  #bottom-left
    ax_td = fig.add_axes([0.65, 0, 0.3, 0.6])  #bottom-right
    ax_Sd = fig.add_axes([0, 0.65, 0.6, 0.3])  #top-left

    q = 0.5  # Mass ratio. Must be q<=1.
    chi1 = 0.3  # Primary spin. Must be chi1<=1
    chi2 = 0.9  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    r = 200. * M  # Separation. Must be r>10M for PN to be valid
    J = 3.14  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.01  # Effective spin: xi_low<xi<xi_up as given by xi_allowed
    Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r)  # Limits in S
    tau = precession.precession_period(xi, J, q, S1, S2,
                                       r)  # Precessional period
    d = 2000  # Size of the statistical sample

    precession.make_temp()  # Create store directory, if necessary
    filename = precession.storedir + "/phase_resampling.dat"  # Output file name
    if not os.path.isfile(filename):  # Compute and store data if not present
        out = open(filename, "w")
        out.write("# q chi1 chi2 r J xi d\n")  # Write header
        out.write("# " +
                  ' '.join([str(x)
                            for x in (q, chi1, chi2, r, J, xi, d)]) + "\n")

        # S and t values for the S(t) plot
        S_vals = numpy.linspace(Sb_min, Sb_max, d)
        t_vals = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_vals
        ])
        # Sample values of S from |dt/dS|. Distribution should be flat in t.
        S_sample = numpy.array(
            [precession.samplingS(xi, J, q, S1, S2, r) for i in range(d)])
        t_sample = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_sample
        ])
        # Continuous distributions (normalized)
        S_distr = numpy.array([
            2. * abs(precession.dtdS(S, xi, J, q, S1, S2, r) / tau)
            for S in S_vals
        ])
        t_distr = numpy.array([2. / tau for t in t_vals])

        out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n")
        for Sv, tv, Ss, ts, Sd, td in zip(S_vals, t_vals, S_sample, t_sample,
                                          S_distr, t_distr):
            out.write(' '.join([str(x)
                                for x in (Sv, tv, Ss, ts, Sd, td)]) + "\n")
        out.close()
    else:  # Read
        S_vals, t_vals, S_sample, t_sample, S_distr, t_distr = numpy.loadtxt(
            filename, unpack=True)

    # Rescale all time values by 10^-6, for nicer plotting
    tau *= 1e-6
    t_vals *= 1e-6
    t_sample *= 1e-6
    t_distr /= 1e-6

    ax_tS.plot(S_vals, t_vals, c='blue', lw=2)  # S(t) curve
    ax_td.plot(t_distr, t_vals, lw=2., c='red')  # Continous distribution P(t)
    ax_Sd.plot(S_vals, S_distr, lw=2., c='red')  # Continous distribution P(S)
    ax_td.hist(t_sample,
               bins=60,
               range=(0, tau / 2.),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4,
               orientation="horizontal")  # Histogram P(t)
    ax_Sd.hist(S_sample,
               bins=60,
               range=(Sb_min, Sb_max),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4)  # Histogram P(S)

    # Options for nice plotting
    ax_tS.set_xlim(Sb_min, Sb_max)
    ax_tS.set_ylim(0, tau / 2.)
    ax_tS.set_xlabel("$S/M^2$")
    ax_tS.set_ylabel("$t/(10^6 M)$")
    ax_td.set_xlim(0, 0.5)
    ax_td.set_ylim(0, tau / 2.)
    ax_td.set_xlabel("$P(t)$")
    ax_td.set_yticklabels([])
    ax_Sd.set_xlim(Sb_min, Sb_max)
    ax_Sd.set_ylim(0, 20)
    ax_Sd.set_xticklabels([])
    ax_Sd.set_ylabel("$P(S)$")

    fig.savefig("phase_resampling.pdf", bbox_inches='tight')  # Save pdf file
Пример #10
0
def spin_angles():
    '''
    Binary dynamics on the precessional timescale. The spin angles
    theta1,theta2, DeltaPhi and theta12 are computed and plotted against the
    time variable, which is obtained integrating dS/dt. The morphology is also
    detected as indicated in the legend of the plot. Output is saved in
    ./spin_angles.pdf.

    **Run using**

        import precession.test
        precession.test.spin_angles()
    '''

    fig = pylab.figure(figsize=(6, 6))  # Create figure object and axes
    ax_t1 = fig.add_axes([0, 1.95, 0.9, 0.5])  # first (top)
    ax_t2 = fig.add_axes([0, 1.3, 0.9, 0.5])  # second
    ax_dp = fig.add_axes([0, 0.65, 0.9, 0.5])  # third
    ax_t12 = fig.add_axes([0, 0, 0.9, 0.5])  # fourth (bottom)

    q = 0.7  # Mass ratio. Must be q<=1.
    chi1 = 0.6  # Primary spin. Must be chi1<=1
    chi2 = 1.  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    r = 20 * M  # Separation. Must be r>10M for PN to be valid
    J = 0.94  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi_vals = [-0.41, -0.3,
               -0.22]  # Effective spin: xi_low<xi<xi_up as given by xi_allowed

    for xi, color in zip(xi_vals,
                         ['blue', 'green', 'red']):  # Loop over three binaries

        tau = precession.precession_period(xi, J, q, S1, S2, r)  # Period
        morphology = precession.find_morphology(xi, J, q, S1, S2,
                                                r)  # Morphology
        if morphology == -1: labelm = "${\\rm L}0$"
        elif morphology == 1: labelm = "${\\rm L}\\pi$"
        elif morphology == 0: labelm = "${\\rm C}$"
        Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2,
                                              r)  # Limits in S
        S_vals = numpy.linspace(Sb_min, Sb_max,
                                1000)  # Create array, from S- to S+
        S_go = S_vals  # First half of the precession cycle: from S- to S+
        t_go = map(lambda x: precession.t_of_S(
            S_go[0], x, Sb_min, Sb_max, xi, J, q, S1, S2, r, 0, sign=-1.),
                   S_go)  # Compute time values. Assume t=0 at S-
        t1_go, t2_go, dp_go, t12_go = zip(*[
            precession.parametric_angles(S, J, xi, q, S1, S2, r) for S in S_go
        ])  # Compute the angles.
        dp_go = [-dp
                 for dp in dp_go]  # DeltaPhi<=0 in the first half of the cycle
        S_back = S_vals[::
                        -1]  # Second half of the precession cycle: from S+ to S-
        t_back = map(
            lambda x: precession.t_of_S(S_back[0],
                                        x,
                                        Sb_min,
                                        Sb_max,
                                        xi,
                                        J,
                                        q,
                                        S1,
                                        S2,
                                        r,
                                        t_go[-1],
                                        sign=1.), S_back
        )  # Compute time, start from the last point of the first half t_go[-1]
        t1_back, t2_back, dp_back, t12_back = zip(*[
            precession.parametric_angles(S, J, xi, q, S1, S2, r)
            for S in S_back
        ])  # Compute the angles. DeltaPhi>=0 in the second half of the cycle

        for ax, vec_go, vec_back in zip(
            [ax_t1, ax_t2, ax_dp, ax_t12], [t1_go, t2_go, dp_go, t12_go],
            [t1_back, t2_back, dp_back, t12_back]):  # Plot all curves
            ax.plot([t / tau for t in t_go],
                    vec_go,
                    c=color,
                    lw=2,
                    label=labelm)
            ax.plot([t / tau for t in t_back], vec_back, c=color, lw=2)

        # Options for nice plotting
        for ax in [ax_t1, ax_t2, ax_dp, ax_t12]:
            ax.set_xlim(0, 1)
            ax.set_xlabel("$t/\\tau$")
            ax.set_xticks(numpy.linspace(0, 1, 5))
        for ax in [ax_t1, ax_t2, ax_t12]:
            ax.set_ylim(0, numpy.pi)
            ax.set_yticks(numpy.linspace(0, numpy.pi, 5))
            ax.set_yticklabels(
                ["$0$", "$\\pi/4$", "$\\pi/2$", "$3\\pi/4$", "$\\pi$"])
        ax_dp.set_ylim(-numpy.pi, numpy.pi)
        ax_dp.set_yticks(numpy.linspace(-numpy.pi, numpy.pi, 5))
        ax_dp.set_yticklabels(
            ["$-\\pi$", "$-\\pi/2$", "$0$", "$\\pi/2$", "$\\pi$"])
        ax_t1.set_ylabel("$\\theta_1$")
        ax_t2.set_ylabel("$\\theta_2$")
        ax_t12.set_ylabel("$\\theta_{12}$")
        ax_dp.set_ylabel("$\\Delta\\Phi$")
        ax_t1.legend(
            loc='lower right',
            fontsize=18)  # Fill the legend with the precessional morphology

    fig.savefig("spin_angles.pdf", bbox_inches='tight')  # Save pdf file
Пример #11
0
def get_alpha_beta(q, chi1, chi2, theta1, theta2, delta_phi, times, f_ref = 20., smooth_oscillation = False, verbose = False):
	"""
get_alpha_beta
==============
	Returns angles alpha and beta by solving PN equations for spins. Uses module precession.
	Angles are evaluated on a user-given time grid (units: s/M_sun) s.t. the 0 of time is at separation r = M_tot.
	Inputs:
		q (N,)				mass ratio (>1)
		chi1 (N,)			dimensionless spin magnitude of BH 1 (in [0,1])
		chi1 (N,)			dimensionless spin magnitude of BH 2 (in [0,1])
		theta1 (N,)			angle between spin 1 and L
		theta2 (N,)			angle between spin 2 and L
		delta_phi (N,)		angle between in plane projection of the spins
		times (D,)			times at which alpha, beta are evaluated (units s/M_sun)
		f_ref				frequency at which the orbital parameters refer to (and at which the computation starts)
		smooth_oscillation	whether to smooth the oscillation and return the average part and the residuals
		verbose 			whether to suppress the output of precession package
	Outputs:
		alpha (N,D)		alpha angle evaluated at times
		beta (N,D)		beta angle evaluated at times (if not smooth_oscillation)
		beta (N,D,3)	[mean of beta angles, amplitude of the oscillating part, phase of the oscillating part] (if smooth_oscillation)
	"""
	#have a loook at precession.evolve_angles: it does exactly what we want..
	#https://github.com/dgerosa/precession/blob/precession_v1/precession/precession.py#L3043
	
	M_sun = 4.93e-6
	t_min = np.max(np.abs(times))
	r_0 = 2. * np.power(t_min/M_sun, .25) #starting point for the r integration #look eq. 4.26 Maggiore #uglyyyyy
	#print(f_ref, precession.rtof(r_0, 1.))
	#print(f_ref)
	r_0 = precession.ftor(f_ref,1)
		
	if isinstance(q,float):
		q = np.array(q)
		chi1 = np.array(chi1)
		chi2 = np.array(chi2)
		theta1 = np.array(theta1)
		theta2 = np.array(theta2)
		delta_phi = np.array(delta_phi)

	if len(set([q.shape, chi1.shape, chi2.shape, theta1.shape, theta2.shape, delta_phi.shape])) != 1:
		raise RuntimeError("Inputs are not of the same shape (N,). Unable to continue")

	if q.ndim == 0:
		q = q[None]
		chi1 = chi1[None]; chi2 = chi2[None]
		theta1 = theta1[None]; theta2 = theta2[None]; delta_phi = delta_phi[None]
		squeeze = True
	else:
		squeeze = False

		#initializing vectors
	alpha = np.zeros((q.shape[0],times.shape[0]))
	if smooth_oscillation:
		t_cutoff = -0.1 #shall I insert a cutoff here?
		beta = np.zeros((q.shape[0],times.shape[0], 3))
	else:
		beta = np.zeros((q.shape[0],times.shape[0]))
	
	if not verbose:
		devnull = open(os.devnull, "w")
		old_stdout = sys.stdout
		sys.stdout = devnull
	else:
		old_stdout = sys.stdout

		#computing alpha, beta
	for i in range(q.shape[0]):
			#computing initial conditions for the time evolution
		q_ = 1./q[i] #using conventions of precession package
		M,m1,m2,S1,S2=precession.get_fixed(q_,chi1[i],chi2[i]) #M_tot is always set to 1

		#print(q_, chi1[i], chi2[i], theta1[i],theta2[i], delta_phi[i], S1, S2, M)
			#nice low level os thing
		print("Generated angle "+str(i)+"\n")
		#old_stdout.write("Generated angle "+str(i)+"\n")
		#old_stdout.flush()
		if np.abs(delta_phi[i]) < 1e-6:#delta Phi cannot be zero(for some reason)
			delta_phi[i] = 1e-6
			
		xi,J, S = precession.from_the_angles(theta1[i],theta2[i], delta_phi[i], q_, S1,S2, r_0) 

		J_vec,L_vec,S1_vec,S2_vec,S_vec = precession.Jframe_projection(xi, S, J, q_, S1, S2, r_0) #initial conditions given angles

		r_f = 1.* M #final separation: time grid is s.t. t = 0 when r = r_f
		sep = np.linspace(r_0, r_f, 5000)

		Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t = precession.orbit_vectors(*L_vec, *S1_vec, *S2_vec, sep, q_, time = True) #time evolution of L, S1, S2
		L = np.sqrt(Lx**2 + Ly**2 + Lz**2)
		
		print(Lx, Ly, Lz, S1x, S1y, S1z, S2x, S2y, S2z, t)
		#quit()
		
			#cos(beta(t)) = L(t).(0,0,1) #this is how I currently do!
			#cos(beta(t)) = L(t).L_vect #this is the convention that I want
		temp_alpha = np.unwrap(np.arctan2(Ly,Lx))
		temp_beta = np.arccos(Lz/L)
		
			#computing beta in the other reference frame
		L_0 = L_vec /np.linalg.norm(L_vec)
		L_t = (np.column_stack([Lx,Ly,Lz]).T/L).T #(D,3)
		temp_beta = np.einsum('ij,j->i', L_t, L_0) #cos beta
		print(L_t.shape, temp_beta.shape, L_vec)
		
		temp_beta = np.arccos(temp_beta)


		t_out = (t-t[-1])*M_sun #output grid
		print("\n\nTimes!! ",t_out[0], times[0])
		ids = np.where(t_out > np.min(times))[0]
		t_out = t_out[ids]
		temp_alpha = temp_alpha[ids]
		temp_beta = temp_beta[ids]
		
		alpha[i,:] = np.interp(times, t_out, temp_alpha)
		if not smooth_oscillation:
			#plt.plot(t_out,temp_beta)
			#plt.show()
			beta[i,:] = np.interp(times, t_out, temp_beta)
		if smooth_oscillation:
			#mean, f_min, f_max = get_spline_mean(t_out, temp_beta[None,:], f_minmax = True)
			s = smoothener(t_out, temp_beta)
			#beta[i,:,0] = mean(times) #avg beta
			beta[i,:,0] = s(times)
			#beta[i,:,1] = np.interp(times, t_out, temp_beta) - mean(times) #residuals of beta

				#dealing with amplitude and phase
			residual = (temp_beta - s(t_out))
			if np.mean(np.abs(residual))< 0.001:
				residual[:] = 0
			id_cutoff = np.where(t_out>t_cutoff)[0]
			not_id_cutoff = np.where(t_out<=t_cutoff)[0]
			residual[id_cutoff] = 0.
			
			
			m_list, M_list = compute_spline_peaks(t_out, residual[None,:])
			amp = lambda t: (M_list[0](t) - m_list[0](t))/2.
			beta[i,:,1] = amp(times) #amplitude
			temp_ph = residual / (amp(t_out)+1e-30)
			temp_ph[id_cutoff] = 0.
			beta[i,:,2] = np.interp(times, t_out, temp_ph) #phase
			beta[i,np.where(np.abs(beta[i,:,2])>1)[0],2] = np.sign(beta[i,np.where(np.abs(beta[i,:,2])>1)[0],2])
			
				#plotting
			if False:# np.max(np.abs(temp_beta-s(t_out))) > 2: #DEBUG
				plt.figure()
				plt.title("Alpha")
				plt.plot(times,alpha[i,:])

				plt.figure()			
				plt.title("Mean maxmin")
				plt.plot(times,beta[i,:,0])
				plt.plot(t_out,temp_beta)
				
				#plt.figure()
				#plt.title("Mean grad")
				#plt.plot(t_out, temp_beta)
				#plt.plot(t_out, mean_grad[0](t_out))
				
				#plt.figure()
				#plt.title("Gradient")
				#plt.plot(t_out,np.gradient(temp_beta, t_out))
				#plt.ylim([-0.6,0.6])
				
				plt.figure()
				plt.title("Amplitude")
				#plt.plot(t_out, amp(t_out))
				plt.plot(times, beta[i,:,1])
				plt.plot(t_out,np.squeeze(temp_beta - s(t_out) ))
				
				#plt.figure()
				#plt.plot(times,beta[i,:,1])
				
				plt.figure()
				plt.title("ph")
				plt.plot(times,beta[i,:,2])
				plt.show()
	
	if not verbose:
		sys.stdout = old_stdout
		devnull.close()

	if squeeze:
		return np.squeeze(alpha), np.squeeze(beta)

	return alpha, beta