def retrain(self): """Train for a session, pulling in any new data from the filesystem""" folder = TrainData.from_folder(self.args.folder) train_data, test_data = folder.load(True, not self.args.no_validation) train_data = TrainData.merge(train_data, self.sampled_data) test_data = TrainData.merge(test_data, self.test) train_inputs, train_outputs = train_data print() try: self.listener.runner.model.fit( train_inputs, train_outputs, self.args.batch_size, self.epoch + self.args.epochs, validation_data=test_data, callbacks=self.callbacks, initial_epoch=self.epoch ) finally: self.listener.runner.model.save(self.args.model)
def retrain(self): """Train for a session, pulling in any new data from the filesystem""" folder = TrainData.from_folder(self.args.folder) train_data, test_data = folder.load(True, not self.args.no_validation) train_data = TrainData.merge(train_data, self.tags_data[0]) test_data = TrainData.merge(test_data, self.tags_data[1]) print() try: self.listener.runner.model.fit(*train_data, self.args.batch_size, self.args.epochs, validation_data=test_data, callbacks=[self.checkpoint]) finally: self.listener.runner.model.save(self.args.model)