def print_return_by_top_n(self, df_list, cnt=None): predict_util = prdct.PredictUtil() for n in range(TOP_N): if cnt is not None: print(str(n) + ': ' + str(len(df_list[n])) + ' / ' + str(cnt) + ' = ' + str(len(df_list[n]) / cnt)) if len(df_list[n]) != 0: df_all = pd.concat(df_list[n], axis=0) predict_util.print_return(df_all, n + 1)
t_util_4.clf = joblib.load(clf_pkl_4) t_util_4.sc = joblib.load(sc_pkl_4) t_util_6.clf = joblib.load(clf_pkl_6) t_util_6.sc = joblib.load(sc_pkl_6) else: print('pklファイルが存在しません。') sys.exit() ht_util = ht.HorseTableUtil() test_race_keys = ht_util.get_race_keys_except_debut_after_ymd(ymd) if len(test_race_keys) == 0: print('入力日に対象レースはありません。') sys.exit() horse_table_list = t_util_4.get_horse_table_list(test_race_keys) predict_util = prdct.PredictUtil() df_list = [] cnt = 0 for n in range(train.TOP_N): df_list.append([]) for horse_table in horse_table_list: horse_table.predict_4_6(t_util_4.clf, t_util_4.sc, t_util_6.clf, t_util_6.sc) for n in range(train.TOP_N): pr = horse_table.get_predict_return(n + 1) if pr is not None: df_list[n].append(pr) cnt += 1 for n in range(train.TOP_N):