def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() self.predictor = CardPredictor() self.points = []
class YOLO(): _defaults = { "model_path": 'model_data/yolo.h5', #yolo "anchors_path": 'model_data/yolo_anchors.txt', "classes_path": 'model_data/coco_classes.txt', #myclasses "score": 0.3, "iou": 0.2, # 0.45 "model_image_size": (416, 416), "gpu_num": 1, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() self.predictor = CardPredictor() self.points = [] def detect_carnumber(self, img_bgr, box): #r1, r2, r3, r4 img_bgr = img_bgr[box[0]:box[1], box[2]:box[3]] r = self.predictor.predict(img_bgr) return r def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors == 6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights( self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle( self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image, frame): start = timer() #origin_img = image #origin_img = cv2.cvtColor(np.asarray(origin_img), cv2.COLOR_RGB2BGR) if self.model_image_size != (None, None): assert self.model_image_size[ 0] % 32 == 0, 'Multiples of 32 required' assert self.model_image_size[ 1] % 32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image( image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) #out_boxes = [i for i in out_boxes if i in ['bus','car','person']] #out_scores = [i for i in out_scores if i in ['bus','car','person']] out_classes = [ i for i in out_classes if self.class_names[i] in ['bus', 'car', 'person'] ] result_info = 'Found {} boxes for {}'.format(len(out_boxes), 'img') print(result_info) font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 400 if len(self.points) != len(out_classes): for i, c in reversed(list(enumerate(out_classes))): box = out_boxes[i] top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) self.points.append({ 'class': self.class_names[c], 'point': [(top + bottom) / 2, (left + right) / 2] }) for i, c in reversed(list(enumerate(out_classes))): predicted_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) if predicted_class == 'car' or predicted_class == 'bus': box = [top, bottom, left, right] carpoint = [(top + bottom) / 2, (left + right) / 2] rate = 51 while rate > 50: if self.points[i]['class'] == predicted_class: rate = math.sqrt( (carpoint[0] - self.points[i]['point'][0])**2 + (carpoint[1] - self.points[i]['point'][1])**2) / 2 i += 1 if i == len(self.points): rate = 0 break carnumber = self.detect_carnumber(frame, box) if carnumber is None: carnumber = 'no' else: carnumber = ''.join(carnumber) label = '{} {} {:.2f}'.format(predicted_class, carnumber, rate) #label = '{} {:.2f}' else: label = '{} {:.1f} {:.2f}'.format(predicted_class, score, rate) #label = '{} {:.2f}' draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) print(label) #(left, top), (right, bottom) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. for i in range(thickness): draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw end = timer() print(end - start) return image, result_info def close_session(self): self.sess.close()