Пример #1
0
 def __init__(self, **kwargs):
     self.__dict__.update(self._defaults)  # set up default values
     self.__dict__.update(kwargs)  # and update with user overrides
     self.class_names = self._get_class()
     self.anchors = self._get_anchors()
     self.sess = K.get_session()
     self.boxes, self.scores, self.classes = self.generate()
     self.predictor = CardPredictor()
     self.points = []
Пример #2
0
class YOLO():
    _defaults = {
        "model_path": 'model_data/yolo.h5',  #yolo
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',  #myclasses
        "score": 0.3,
        "iou": 0.2,  # 0.45
        "model_image_size": (416, 416),
        "gpu_num": 1,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)  # set up default values
        self.__dict__.update(kwargs)  # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()
        self.predictor = CardPredictor()
        self.points = []

    def detect_carnumber(self, img_bgr, box):  #r1, r2, r3, r4
        img_bgr = img_bgr[box[0]:box[1], box[2]:box[3]]
        r = self.predictor.predict(img_bgr)
        return r

    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors == 6  # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(
                self.model_path)  # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image, frame):
        start = timer()
        #origin_img = image
        #origin_img = cv2.cvtColor(np.asarray(origin_img), cv2.COLOR_RGB2BGR)
        if self.model_image_size != (None, None):
            assert self.model_image_size[
                0] % 32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[
                1] % 32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(
                image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })
        #out_boxes = [i for i in out_boxes if i in ['bus','car','person']]
        #out_scores = [i for i in out_scores if i in ['bus','car','person']]
        out_classes = [
            i for i in out_classes
            if self.class_names[i] in ['bus', 'car', 'person']
        ]
        result_info = 'Found {} boxes for {}'.format(len(out_boxes), 'img')
        print(result_info)
        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                                  size=np.floor(3e-2 * image.size[1] +
                                                0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 400

        if len(self.points) != len(out_classes):
            for i, c in reversed(list(enumerate(out_classes))):
                box = out_boxes[i]
                top, left, bottom, right = box

                top = max(0, np.floor(top + 0.5).astype('int32'))
                left = max(0, np.floor(left + 0.5).astype('int32'))
                bottom = min(image.size[1],
                             np.floor(bottom + 0.5).astype('int32'))
                right = min(image.size[0],
                            np.floor(right + 0.5).astype('int32'))

                self.points.append({
                    'class':
                    self.class_names[c],
                    'point': [(top + bottom) / 2, (left + right) / 2]
                })

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))

            if predicted_class == 'car' or predicted_class == 'bus':
                box = [top, bottom, left, right]
                carpoint = [(top + bottom) / 2, (left + right) / 2]
                rate = 51
                while rate > 50:
                    if self.points[i]['class'] == predicted_class:
                        rate = math.sqrt(
                            (carpoint[0] - self.points[i]['point'][0])**2 +
                            (carpoint[1] - self.points[i]['point'][1])**2) / 2
                    i += 1
                    if i == len(self.points):
                        rate = 0
                        break

                carnumber = self.detect_carnumber(frame, box)

                if carnumber is None:
                    carnumber = 'no'
                else:
                    carnumber = ''.join(carnumber)
                label = '{} {} {:.2f}'.format(predicted_class, carnumber,
                                              rate)  #label = '{} {:.2f}'
            else:
                label = '{} {:.1f} {:.2f}'.format(predicted_class, score,
                                                  rate)  #label = '{} {:.2f}'
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            print(label)  #(left, top), (right, bottom)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        end = timer()
        print(end - start)
        return image, result_info

    def close_session(self):
        self.sess.close()