Пример #1
0
def main(_):
    logger = logging.getLogger('ai_law')
    logger.setLevel(logging.INFO)
    fh = logging.FileHandler(FLAGS.log_path, mode='a')
    fh.setLevel(logging.INFO)
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
        # 制定formatter
    fmt = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
    datefmt = "%a %Y-%m-%d %H:%M:%S"  # TODO month
    formatter = logging.Formatter(fmt, datefmt)

    # 为文件和控制台设置输出格式
    fh.setFormatter(formatter)
    ch.setFormatter(formatter)

    # 添加两种句柄到logger对象
    logger.addHandler(fh)
    logger.addHandler(ch)

    logger.info("model:{}".format(FLAGS.model))
    vocab_word2index, accusation_label2index,articles_label2index= create_or_load_vocabulary(FLAGS.data_path,FLAGS.predict_path,FLAGS.traning_data_file,FLAGS.vocab_size,name_scope=FLAGS.name_scope,test_mode=FLAGS.test_mode)
    deathpenalty_label2index={True:1,False:0}
    lifeimprisonment_label2index={True:1,False:0}
    vocab_size = len(vocab_word2index);print("cnn_model.vocab_size:",vocab_size);
    accusation_num_classes=len(accusation_label2index);article_num_classes=len(articles_label2index)
    deathpenalty_num_classes=len(deathpenalty_label2index);lifeimprisonment_num_classes=len(lifeimprisonment_label2index)
    logger.info("accusation_num_classes:{} article_num_clasess:{} ".format(accusation_num_classes, article_num_classes))
    train,valid, test= load_data_multilabel(FLAGS.traning_data_file,FLAGS.valid_data_file,FLAGS.test_data_path,FLAGS.stopwords_file ,vocab_word2index, accusation_label2index,articles_label2index,deathpenalty_label2index,lifeimprisonment_label2index,
                                      FLAGS.sentence_len,name_scope=FLAGS.name_scope,test_mode=FLAGS.test_mode)
    train_X, train_Y_accusation, train_Y_article, train_Y_deathpenalty, train_Y_lifeimprisonment, train_Y_imprisonment,train_weights_accusation,train_weights_article = train
    valid_X, valid_Y_accusation, valid_Y_article, valid_Y_deathpenalty, valid_Y_lifeimprisonment, valid_Y_imprisonment,valid_weights_accusation,valid_weights_article = valid
    test_X, test_Y_accusation, test_Y_article, test_Y_deathpenalty, test_Y_lifeimprisonment, test_Y_imprisonment,test_weights_accusation,test_weights_article = test
    #print some message for debug purpose
    # print("length of training data:",len(train_X),";valid data:",len(valid_X),";test data:",len(test_X))
    logger.info("length of training data:{} ;valid data:{} ;test data:{}".format(len(train_X),len(valid_X),len(test_X)))
    # print("trainX_[0]:", train_X[0]);
    train_Y_accusation_short = get_target_label_short(train_Y_accusation[0])
    train_Y_article_short = get_target_label_short(train_Y_article[0])
    # print("train_Y_accusation_short:", train_Y_accusation_short,";train_Y_article_short:",train_Y_article_short)
    # print("train_Y_deathpenalty:",train_Y_deathpenalty[0],";train_Y_lifeimprisonment:",train_Y_lifeimprisonment[0],";train_Y_imprisonment:",train_Y_imprisonment[0])
    #2.create session.
    config=tf.ConfigProto()
    config.gpu_options.allow_growth=True
    with tf.Session(config=config) as sess:
        #Instantiate Model
        model=HierarchicalAttention( accusation_num_classes,article_num_classes, deathpenalty_num_classes,lifeimprisonment_num_classes,FLAGS.learning_rate,FLAGS.batch_size,
                            FLAGS.decay_steps, FLAGS.decay_rate, FLAGS.sentence_len, FLAGS.num_sentences,vocab_size, FLAGS.embed_size,FLAGS.hidden_size,
                                     num_filters=FLAGS.num_filters,model=FLAGS.model,filter_sizes=filter_sizes,stride_length=stride_length,pooling_strategy=FLAGS.pooling_strategy)
        #Initialize Save
        saver=tf.train.Saver()
        if os.path.exists(FLAGS.ckpt_dir_accu+"checkpoint"):
            logger.info("Restoring Variables from Checkpoint.")
            saver.restore(sess,tf.train.latest_checkpoint(FLAGS.ckpt_dir_accu))
            for i in range(2): #decay learning rate if necessary.
                logger.info("{} Going to decay learning rate by half.".format(i))
                sess.run(model.learning_rate_decay_half_op)
                #sess.run(model.learning_rate_decay_half_op)

        else:
            logger.info('Initializing Variables')
            sess.run(tf.global_variables_initializer())
            if FLAGS.use_pretrained_embedding: #load pre-trained word embedding
                vocabulary_index2word={index:word for word,index in vocab_word2index.items()}
                assign_pretrained_word_embedding(sess, vocabulary_index2word, vocab_size, model,FLAGS.word2vec_model_path,model.Embedding)
                #assign_pretrained_word_embedding(sess, vocabulary_index2word, vocab_size, model,FLAGS.word2vec_model_path2,model.Embedding2) #TODO

        curr_epoch=sess.run(model.epoch_step)
        #3.feed data & training
        number_of_training_data=len(train_X)
        batch_size=FLAGS.batch_size
        iteration=0
        accasation_score_best=-100
        law_score_best=-100
        imprisonment_score_best=-100

        for epoch in range(curr_epoch,FLAGS.num_epochs):
            loss_total, counter =  0.0, 0
            for start, end in zip(range(0, number_of_training_data, batch_size),range(batch_size, number_of_training_data, batch_size)):
                iteration=iteration+1
                if epoch==0 and counter==0:
                    logger.info("trainX[start:end]: {} train_X.shape: {}".format(train_X[start:end], train_X.shape))
                feed_dict = {model.input_x: train_X[start:end],model.input_y_accusation:train_Y_accusation[start:end],model.input_y_article:train_Y_article[start:end],
                             model.input_y_deathpenalty:train_Y_deathpenalty[start:end],model.input_y_lifeimprisonment:train_Y_lifeimprisonment[start:end],
                             model.input_y_imprisonment:train_Y_imprisonment[start:end],model.input_weight_accusation:train_weights_accusation[start:end],
                             model.input_weight_article:train_weights_article[start:end],model.dropout_keep_prob: FLAGS.keep_dropout_rate,
                             model.is_training_flag:FLAGS.is_training_flag}
                             #model.iter: iteration,model.tst: not FLAGS.is_training
                current_loss,lr,loss_accusation,loss_article,loss_deathpenalty,loss_lifeimprisonment,loss_imprisonment,l2_loss,_=\
                    sess.run([model.loss_val,model.learning_rate,model.loss_accusation,model.loss_article,model.loss_deathpenalty,
                                         model.loss_lifeimprisonment,model.loss_imprisonment,model.l2_loss,model.train_op],feed_dict) #model.update_ema
                loss_total,counter=loss_total+current_loss,counter+1
                if counter %200==0:
                    print("Epoch %d\tBatch %d\tTrain Loss:%.3f\tLearning rate:%.5f" %(epoch,counter,float(loss_total)/float(counter),lr))
                if counter %600==0:
                    # print("Loss_accusation:%.3f\tLoss_article:%.3f\tLoss_deathpenalty:%.3f\tLoss_lifeimprisonment:%.3f\tLoss_imprisonment:%.3f\tL2_loss:%.3f\tCurrent_loss:%.3f\t"
                          # %(loss_accusation,loss_article,loss_deathpenalty,loss_lifeimprisonment,loss_imprisonment,l2_loss,current_loss))
                    logger.info("Loss_accusation:{} \tLoss_article:{} \tLoss_deathpenalty:{} \tLoss_lifeimprisonment:{} \tLoss_imprisonment:{} \tL2_loss:{} \tCurrent_loss:{} \t".format(loss_accusation,loss_article,loss_deathpenalty,loss_lifeimprisonment,loss_imprisonment,l2_loss,current_loss))
                ########################################################################################################
                if start!=0 and start%(2000*FLAGS.batch_size)==0: # eval every 400 steps.
                    loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle, f1_a_death, f1_i_death, f1_a_life, f1_i_life, score_penalty = \
                        do_eval(sess, model, valid,iteration,accusation_num_classes,article_num_classes)
                    accasation_score=((f1_macro_accasation+f1_micro_accasation)/2.0)*100.0
                    article_score=((f1_a_article+f1_i_aritcle)/2.0)*100.0
                    score_all=accasation_score+article_score+score_penalty #3ecfDzJbjUvZPUdS
                    # print("Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f Micro_f1_article:%.3f Macro_f1_deathpenalty:%.3f\t"
                                # "Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
                                # % (epoch, loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle,f1_a_death, f1_i_death, f1_a_life, f1_i_life))
                    logger.info("Epoch {} ValidLoss:{} \n Macro_f1_accasation:{} \tMicro_f1_accsastion:{}\tMacro_f1_article:{} \t Micro_f1_article:{} \t Macro_f1_deathpenalty:{} \t"
                                "Micro_f1_deathpenalty:{} \tMacro_f1_lifeimprisonment:{} \tMicro_f1_lifeimprisonment:{}\t".format(epoch, loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle,f1_a_death, f1_i_death, f1_a_life, f1_i_life))
                    # print("1.Accasation Score:", accasation_score, ";2.Article Score:", article_score, ";3.Penalty Score:",score_penalty, ";Score ALL:", score_all)
                    logger.info("Epoch:{} 1.Accasation Score:{} ;2.Article Score:{} ;3.Penalty Score:{} ;Score ALL:{}\n accasation_score_best{}".format(epoch,accasation_score, article_score, score_penalty, score_all, accasation_score_best))
                    # save model to checkpoint
                    if accasation_score>accasation_score_best:
                        save_path = FLAGS.ckpt_dir_accu + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                        logger.info("going to save check point for accusation.")
                        saver.save(sess, save_path, global_step=epoch)
                        accasation_score_best=accasation_score
                    if article_score > law_score_best:
                        save_path = FLAGS.ckpt_dir_law + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                        logger.info("going to save check point for article.")
                        saver.save(sess, save_path, global_step=epoch)
                        law_score_best = article_score
                    if score_penalty > imprisonment_score_best:
                        save_path = FLAGS.ckpt_dir_imprision + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                        logger.info("going to save check point for imprisonment.")
                        saver.save(sess, save_path, global_step=epoch)
                        imprisonment_score_best = score_penalty

                    logger.info("Epoch:{} Bestscore:1 Accasation:{} ;2. Article:{} ;3.penalty:{}".format(epoch, accasation_score_best, law_score_best, imprisonment_score_best))
            #epoch increment
            # print("going to increment epoch counter....")
            logger.info("going to increment epoch counter....")
            sess.run(model.epoch_increment)

            # 4.validation
            print(epoch,FLAGS.validate_every,(epoch % FLAGS.validate_every==0))
            if epoch % FLAGS.validate_every==0:
                loss,f1_macro_accasation,f1_micro_accasation,f1_a_article,f1_i_aritcle,f1_a_death,f1_i_death,f1_a_life,f1_i_life,score_penalty=\
                    do_eval(sess,model,valid,iteration,accusation_num_classes,article_num_classes)
                accasation_score = ((f1_macro_accasation + f1_micro_accasation) / 2.0) * 100.0
                article_score = ((f1_a_article + f1_i_aritcle) / 2.0) * 100.0
                score_all = accasation_score + article_score + score_penalty
                print("Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f\tMicro_f1_article:%.3f\tMacro_f1_deathpenalty:%.3f\t"
                      "Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
                      % (epoch,loss,f1_macro_accasation,f1_micro_accasation,f1_a_article,f1_i_aritcle,f1_a_death,f1_i_death,f1_a_life,f1_i_life))
                # print("===>1.Accasation Score:", accasation_score, ";2.Article Score:", article_score,";3.Penalty Score:",score_penalty,";Score ALL:",score_all)
                logger.info("===>1.Accasation Score: {} ;2.Article Score: {} ;3.Penalty Score:{} ;Score ALL:{}".format(accasation_score, article_score, score_penalty, score_all))
                #save model to checkpoint
                if accasation_score > accasation_score_best:
                    save_path=FLAGS.ckpt_dir_accu+"model.ckpt"
                    print("going to save check point.")
                    saver.save(sess,save_path,global_step=epoch)
                    accasation_score_best = accasation_score
                if article_score > law_score_best:
                    save_path = FLAGS.ckpt_dir_law + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                    logger.info("going to save check point for article.")
                    saver.save(sess, save_path, global_step=epoch)
                    law_score_best = article_score
                if score_penalty > imprisonment_score_best:
                    save_path = FLAGS.ckpt_dir_imprision + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                    logger.info("going to save check point for imprisonment.")
                    saver.save(sess, save_path, global_step=epoch)
                    imprisonment_score_best = score_penalty
            #if (epoch == 2 or epoch == 4 or epoch == 7 or epoch==10 or epoch == 13  or epoch==19):
            if (epoch == 1 or epoch == 3 or epoch == 6 or epoch == 9 or epoch == 12 or epoch == 18):
                for i in range(2):
                    print(i, "Going to decay learning rate by half.")
                    sess.run(model.learning_rate_decay_half_op)

        # 5.最后在测试集上做测试,并报告测试准确率 Testto 0.0
        # test_loss,macrof1,microf1 = do_eval(sess, flags.model, testX, testY,iteration)
        # print("Test Loss:%.3f\tMacro f1:%.3f\tMicro f1:%.3f" % (test_loss,macrof1,microf1))
        # print("training completed...")
    pass
Пример #2
0
def main(_):
    vocab_word2index, accusation_label2index, articles_label2index = create_or_load_vocabulary(
        FLAGS.data_path,
        FLAGS.predict_path,
        FLAGS.traning_data_file,
        FLAGS.vocab_size,
        name_scope=FLAGS.name_scope,
        test_mode=FLAGS.test_mode)
    deathpenalty_label2index = {True: 1, False: 0}
    lifeimprisonment_label2index = {True: 1, False: 0}
    vocab_size = len(vocab_word2index)
    print("cnn_model.vocab_size:", vocab_size)
    accusation_num_classes = len(accusation_label2index)
    article_num_classes = len(articles_label2index)
    deathpenalty_num_classes = len(deathpenalty_label2index)
    lifeimprisonment_num_classes = len(lifeimprisonment_label2index)
    print("accusation_num_classes:", accusation_num_classes)
    print("article_num_clasess:", article_num_classes)
    train, valid, test = load_data_multilabel(FLAGS.traning_data_file,
                                              FLAGS.valid_data_file,
                                              FLAGS.test_data_path,
                                              vocab_word2index,
                                              accusation_label2index,
                                              articles_label2index,
                                              deathpenalty_label2index,
                                              lifeimprisonment_label2index,
                                              FLAGS.sentence_len,
                                              name_scope=FLAGS.name_scope,
                                              test_mode=FLAGS.test_mode)
    train_X, train_Y_accusation, train_Y_article, train_Y_deathpenalty, train_Y_lifeimprisonment, train_Y_imprisonment = train
    valid_X, valid_Y_accusation, valid_Y_article, valid_Y_deathpenalty, valid_Y_lifeimprisonment, valid_Y_imprisonment = valid
    test_X, test_Y_accusation, test_Y_article, test_Y_deathpenalty, test_Y_lifeimprisonment, test_Y_imprisonment = test
    #print some message for debug purpose
    print("length of training data:", len(train_X), ";valid data:",
          len(valid_X), ";test data:", len(test_X))
    print("trainX_[0]:", train_X[0])
    train_Y_accusation_short = get_target_label_short(train_Y_accusation[0])
    train_Y_article_short = get_target_label_short(train_Y_article[0])
    print("train_Y_accusation_short:", train_Y_accusation_short,
          ";train_Y_article_short:", train_Y_article_short)
    print("train_Y_deathpenalty:", train_Y_deathpenalty[0],
          ";train_Y_lifeimprisonment:", train_Y_lifeimprisonment[0],
          ";train_Y_imprisonment:", train_Y_imprisonment[0])
    #2.create session.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        #Instantiate Model
        model = HierarchicalAttention(
            accusation_num_classes, article_num_classes,
            deathpenalty_num_classes, lifeimprisonment_num_classes,
            FLAGS.learning_rate, FLAGS.batch_size, FLAGS.decay_steps,
            FLAGS.decay_rate, FLAGS.sentence_len, FLAGS.num_sentences,
            vocab_size, FLAGS.embed_size, FLAGS.hidden_size, FLAGS.is_training)
        #Initialize Save
        saver = tf.train.Saver()
        if os.path.exists(FLAGS.ckpt_dir + "checkpoint"):
            print("Restoring Variables from Checkpoint.")
            saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir))
            for i in range(2):  #decay learning rate if necessary.
                print(i, "Going to decay learning rate by half.")
                sess.run(model.learning_rate_decay_half_op)
        else:
            print('Initializing Variables')
            sess.run(tf.global_variables_initializer())
            if FLAGS.use_embedding:  #load pre-trained word embedding
                vocabulary_index2word = {
                    index: word
                    for word, index in vocab_word2index.items()
                }
                assign_pretrained_word_embedding(sess, vocabulary_index2word,
                                                 vocab_size, model,
                                                 FLAGS.word2vec_model_path)
        curr_epoch = sess.run(model.epoch_step)
        #3.feed data & training
        number_of_training_data = len(train_X)
        batch_size = FLAGS.batch_size
        iteration = 0
        for epoch in range(curr_epoch, FLAGS.num_epochs):
            loss_total, counter = 0.0, 0
            for start, end in zip(
                    range(0, number_of_training_data, batch_size),
                    range(batch_size, number_of_training_data, batch_size)):
                iteration = iteration + 1
                if epoch == 0 and counter == 0:
                    print("trainX[start:end]:", train_X[start:end],
                          "train_X.shape:", train_X.shape)
                feed_dict = {
                    model.input_x:
                    train_X[start:end],
                    model.input_y_accusation:
                    train_Y_accusation[start:end],
                    model.input_y_article:
                    train_Y_article[start:end],
                    model.input_y_deathpenalty:
                    train_Y_deathpenalty[start:end],
                    model.input_y_lifeimprisonment:
                    train_Y_lifeimprisonment[start:end],
                    model.input_y_imprisonment:
                    train_Y_imprisonment[start:end],
                    model.dropout_keep_prob:
                    FLAGS.keep_dropout_rate
                }
                #model.iter: iteration,model.tst: not FLAGS.is_training
                current_loss, lr, loss_accusation, loss_article, loss_deathpenalty, loss_lifeimprisonment, loss_imprisonment, l2_loss, _ = sess.run(
                    [
                        model.loss_val, model.learning_rate,
                        model.loss_accusation, model.loss_article,
                        model.loss_deathpenalty, model.loss_lifeimprisonment,
                        model.loss_imprisonment, model.l2_loss, model.train_op
                    ], feed_dict)  #model.update_ema
                loss_total, counter = loss_total + current_loss, counter + 1
                if counter % 100 == 0:
                    print(
                        "Epoch %d\tBatch %d\tTrain Loss:%.3f\tLearning rate:%.5f"
                        % (epoch, counter, float(loss_total) / float(counter),
                           lr))
                if counter % 400 == 0:
                    print(
                        "Loss_accusation:%.3f\tLoss_article:%.3f\tLoss_deathpenalty:%.3f\tLoss_lifeimprisonment:%.3f\tLoss_imprisonment:%.3f\tL2_loss:%.3f\tCurrent_loss:%.3f\t"
                        % (loss_accusation, loss_article, loss_deathpenalty,
                           loss_lifeimprisonment, loss_imprisonment, l2_loss,
                           current_loss))
                ########################################################################################################
                if start != 0 and start % (
                        1000 * FLAGS.batch_size) == 0:  # eval every 400 steps.
                    loss, f1_macro_accasation, f1_micro_accasation, f1_a_article, f1_i_aritcle, f1_a_death, f1_i_death, f1_a_life, f1_i_life, score_penalty = \
                        do_eval(sess, model, valid,iteration,accusation_num_classes,article_num_classes)
                    accasation_score = (
                        (f1_macro_accasation + f1_micro_accasation) /
                        2.0) * 100.0
                    article_score = (
                        (f1_a_article + f1_i_aritcle) / 2.0) * 100.0
                    score_all = accasation_score + article_score + score_penalty
                    print(
                        "Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f Micro_f1_article:%.3f Macro_f1_deathpenalty:%.3f\t"
                        "Micro_f1_deathpenalty:%.3f\tMacro_f1_lifeimprisonment:%.3f\tMicro_f1_lifeimprisonment:%.3f\t"
                        % (epoch, loss, f1_macro_accasation,
                           f1_micro_accasation, f1_a_article, f1_i_aritcle,
                           f1_a_death, f1_i_death, f1_a_life, f1_i_life))
                    print("1.Accasation Score:", accasation_score,
                          ";2.Article Score:", article_score,
                          ";3.Penalty Score:", score_penalty, ";Score ALL:",
                          score_all)
                    # save model to checkpoint
                    #save_path = FLAGS.ckpt_dir + "model.ckpt" #TODO temp remove==>only save checkpoint for each epoch once.
                    #saver.save(sess, save_path, global_step=epoch)
            #epoch increment
            print("going to increment epoch counter....")
            sess.run(model.epoch_increment)

            # 4.validation
            print(epoch, FLAGS.validate_every,
                  (epoch % FLAGS.validate_every == 0))
            if epoch % FLAGS.validate_every == 0:
                loss,f1_macro_accasation,f1_micro_accasation,f1_a_article,f1_i_aritcle,f1_a_death,f1_i_death,f1_a_life,f1_i_life,score_penalty=\
                    do_eval(sess,model,valid,iteration,accusation_num_classes,article_num_classes)
                accasation_score = (
                    (f1_macro_accasation + f1_micro_accasation) / 2.0) * 100.0
                article_score = ((f1_a_article + f1_i_aritcle) / 2.0) * 100.0
                score_all = accasation_score + article_score + score_penalty
                print()
                print(
                    "Epoch %d ValidLoss:%.3f\tMacro_f1_accasation:%.3f\tMicro_f1_accsastion:%.3f\tMacro_f1_article:%.3f\tMicro_f1_article:%.3f\tMacro_f1_deathpenalty%.3f\t"
                    "Micro_f1_deathpenalty%.3f\tMacro_f1_lifeimprisonment%.3f\tMicro_f1_lifeimprisonment%.3f\t"
                    % (epoch, loss, f1_macro_accasation, f1_micro_accasation,
                       f1_a_article, f1_i_aritcle, f1_a_death, f1_i_death,
                       f1_a_life, f1_i_life))
                print("===>1.Accasation Score:", accasation_score,
                      ";2.Article Score:", article_score, ";3.Penalty Score:",
                      score_penalty, ";Score ALL:", score_all)

                #save model to checkpoint
                save_path = FLAGS.ckpt_dir + "model.ckpt"
                saver.save(sess, save_path, global_step=epoch)

        # 5.最后在测试集上做测试,并报告测试准确率 Testto 0.0
        #test_loss,macrof1,microf1 = do_eval(sess, textCNN, testX, testY,iteration)
        #print("Test Loss:%.3f\tMacro f1:%.3f\tMicro f1:%.3f" % (test_loss,macrof1,microf1))
        print("training completed...")
    pass