Пример #1
0
def convert_tsv_to_tfrecord(input_file, output_file, max_seq_length, sp_model, encoder, lower):
    tf.logging.set_verbosity(tf.logging.INFO)
    sp = spm.SentencePieceProcessor()
    sp.load(sp_model)
    examples = []
    for data in get_data(input_file, max_seq_length - 3, sp, encoder, lower):
        examples.append(single_example(*data, max_length=max_seq_length))

    if "train" in input_file:
        tokens = 0
        words = 0
        first_word = 0
        prepro_func = partial(preprocess_text, lower=lower)
        with open(input_file, 'r') as f:
            lines = f.readlines()
            for line in lines:
                line = line.strip()
                if line:
                    line = line.split("\t")
                    if line[-1] != "O":
                        words += 1
                        pieces = encode_pieces(sp, prepro_func(line[0]))
                        tokens += len(pieces)
                        first_word += len(pieces[0])
        print("{} {} {} {}".format(input_file, tokens, words, first_word))

    file_based_convert_examples_to_features(examples, output_file)
    return len(examples)
 def tokenize(self, text):
     """Tokenize text for XLNet"""
     processed_text = prepro_utils.preprocess_text(text,
                                                   lower=self.lower_case)
     tokenized_pieces = prepro_utils.encode_pieces(self.sp_processor,
                                                   processed_text,
                                                   return_unicode=False)
     return tokenized_pieces
Пример #3
0
def convert_examples_to_features(examples, sp_model, max_seq_length,
                                 doc_stride, max_query_length, is_training,
                                 uncased):
    """Loads a data file into a list of `InputBatch`s."""

    cnt_pos, cnt_neg = 0, 0
    unique_id = 1000000000
    max_N, max_M = 1024, 1024
    f = np.zeros((max_N, max_M), dtype=np.float32)

    for (example_index, example) in enumerate(examples):

        if example_index % 100 == 0:
            print('Converting {}/{} pos {} neg {}'.format(
                example_index, len(examples), cnt_pos, cnt_neg))

        query_tokens = encode_ids(
            sp_model, preprocess_text(example.question_text, lower=uncased))

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        paragraph_text = example.paragraph_text
        para_tokens = encode_pieces(
            sp_model, preprocess_text(example.paragraph_text, lower=uncased))

        chartok_to_tok_index = []
        tok_start_to_chartok_index = []
        tok_end_to_chartok_index = []
        char_cnt = 0
        for i, token in enumerate(para_tokens):
            chartok_to_tok_index.extend([i] * len(token))
            tok_start_to_chartok_index.append(char_cnt)
            char_cnt += len(token)
            tok_end_to_chartok_index.append(char_cnt - 1)

        tok_cat_text = ''.join(para_tokens).replace(SPIECE_UNDERLINE, ' ')
        N, M = len(paragraph_text), len(tok_cat_text)

        if N > max_N or M > max_M:
            max_N = max(N, max_N)
            max_M = max(M, max_M)
            f = np.zeros((max_N, max_M), dtype=np.float32)
            gc.collect()

        g = {}

        def _lcs_match(max_dist):
            f.fill(0)
            g.clear()

            ### longest common sub sequence
            # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
            for i in range(N):

                # note(zhiliny):
                # unlike standard LCS, this is specifically optimized for the setting
                # because the mismatch between sentence pieces and original text will
                # be small
                for j in range(i - max_dist, i + max_dist):
                    if j >= M or j < 0: continue

                    if i > 0:
                        g[(i, j)] = 0
                        f[i, j] = f[i - 1, j]

                    if j > 0 and f[i, j - 1] > f[i, j]:
                        g[(i, j)] = 1
                        f[i, j] = f[i, j - 1]

                    f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
                    if (preprocess_text(paragraph_text[i],
                                        lower=uncased,
                                        remove_space=False) == tok_cat_text[j]
                            and f_prev + 1 > f[i, j]):
                        g[(i, j)] = 2
                        f[i, j] = f_prev + 1

        max_dist = abs(N - M) + 5
        for _ in range(2):
            _lcs_match(max_dist)
            if f[N - 1, M - 1] > 0.8 * N: break
            max_dist *= 2

        orig_to_chartok_index = [None] * N
        chartok_to_orig_index = [None] * M
        i, j = N - 1, M - 1
        while i >= 0 and j >= 0:
            if (i, j) not in g: break
            if g[(i, j)] == 2:
                orig_to_chartok_index[i] = j
                chartok_to_orig_index[j] = i
                i, j = i - 1, j - 1
            elif g[(i, j)] == 1:
                j = j - 1
            else:
                i = i - 1

        if all(v is None
               for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N:
            print('MISMATCH DETECTED!')
            continue

        tok_start_to_orig_index = []
        tok_end_to_orig_index = []
        for i in range(len(para_tokens)):
            start_chartok_pos = tok_start_to_chartok_index[i]
            end_chartok_pos = tok_end_to_chartok_index[i]
            start_orig_pos = _convert_index(chartok_to_orig_index,
                                            start_chartok_pos,
                                            N,
                                            is_start=True)
            end_orig_pos = _convert_index(chartok_to_orig_index,
                                          end_chartok_pos,
                                          N,
                                          is_start=False)

            tok_start_to_orig_index.append(start_orig_pos)
            tok_end_to_orig_index.append(end_orig_pos)

        if not is_training:
            tok_start_position = tok_end_position = None

        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1

        if is_training and not example.is_impossible:
            start_position = example.start_position
            end_position = start_position + len(example.orig_answer_text) - 1

            start_chartok_pos = _convert_index(orig_to_chartok_index,
                                               start_position,
                                               is_start=True)
            tok_start_position = chartok_to_tok_index[start_chartok_pos]

            end_chartok_pos = _convert_index(orig_to_chartok_index,
                                             end_position,
                                             is_start=False)
            tok_end_position = chartok_to_tok_index[end_chartok_pos]
            assert tok_start_position <= tok_end_position

        def _piece_to_id(x):
            if six.PY2 and isinstance(x, unicode):
                x = x.encode('utf-8')
            return sp_model.PieceToId(x)

        all_doc_tokens = list(map(_piece_to_id, para_tokens))

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_is_max_context = {}
            segment_ids = []
            p_mask = []

            cur_tok_start_to_orig_index = []
            cur_tok_end_to_orig_index = []

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i

                cur_tok_start_to_orig_index.append(
                    tok_start_to_orig_index[split_token_index])
                cur_tok_end_to_orig_index.append(
                    tok_end_to_orig_index[split_token_index])

                is_max_context = _check_is_max_context(doc_spans,
                                                       doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(SEG_ID_P)
                p_mask.append(0)

            paragraph_len = len(tokens)

            tokens.append(SEP_ID)
            segment_ids.append(SEG_ID_P)
            p_mask.append(1)

            # note(zhiliny): we put P before Q
            # because during pretraining, B is always shorter than A
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(SEG_ID_Q)
                p_mask.append(1)
            tokens.append(SEP_ID)
            segment_ids.append(SEG_ID_Q)
            p_mask.append(1)

            cls_index = len(segment_ids)
            tokens.append(CLS_ID)
            segment_ids.append(SEG_ID_CLS)
            p_mask.append(0)

            input_ids = tokens

            # The mask has 0 for real tokens and 1 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [0] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(1)
                segment_ids.append(SEG_ID_PAD)
                p_mask.append(1)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length
            assert len(p_mask) == max_seq_length

            span_is_impossible = example.is_impossible
            start_position = None
            end_position = None
            if is_training and not span_is_impossible:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start
                        and tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    # continue
                    start_position = 0
                    end_position = 0
                    span_is_impossible = True
                else:
                    # note(zhiliny): we put P before Q, so doc_offset should be zero.
                    # doc_offset = len(query_tokens) + 2
                    doc_offset = 0
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset

            if is_training and span_is_impossible:
                start_position = cls_index
                end_position = cls_index

            if example_index < 0:
                print("*** Example ***")
                print("unique_id: %s" % (unique_id))
                print("example_index: %s" % (example_index))
                print("doc_span_index: %s" % (doc_span_index))
                print("tok_start_to_orig_index: %s" %
                      " ".join([str(x) for x in cur_tok_start_to_orig_index]))
                print("tok_end_to_orig_index: %s" %
                      " ".join([str(x) for x in cur_tok_end_to_orig_index]))
                print("token_is_max_context: %s" % " ".join([
                    "%d:%s" % (x, y)
                    for (x, y) in six.iteritems(token_is_max_context)
                ]))
                print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                print("input_mask: %s" % " ".join([str(x)
                                                   for x in input_mask]))
                print("segment_ids: %s" %
                      " ".join([str(x) for x in segment_ids]))

                if is_training and span_is_impossible:
                    print("impossible example span")

                if is_training and not span_is_impossible:
                    pieces = [
                        sp_model.IdToPiece(token)
                        for token in tokens[start_position:(end_position + 1)]
                    ]
                    answer_text = sp_model.DecodePieces(pieces)
                    print("start_position: %d" % (start_position))
                    print("end_position: %d" % (end_position))
                    print("answer: %s" % (printable_text(answer_text)))

                    # note(zhiliny): With multi processing,
                    # the example_index is actually the index within the current process
                    # therefore we use example_index=None to avoid being used in the future.
                    # The current code does not use example_index of training data.
            if is_training:
                feat_example_index = None
            else:
                feat_example_index = example_index

            feature = InputFeatures(
                unique_id=unique_id,
                example_index=feat_example_index,
                doc_span_index=doc_span_index,
                tok_start_to_orig_index=cur_tok_start_to_orig_index,
                tok_end_to_orig_index=cur_tok_end_to_orig_index,
                token_is_max_context=token_is_max_context,
                input_ids=input_ids,
                input_mask=input_mask,
                p_mask=p_mask,
                segment_ids=segment_ids,
                paragraph_len=paragraph_len,
                cls_index=cls_index,
                start_position=start_position,
                end_position=end_position,
                is_impossible=span_is_impossible)

            unique_id += 1
            if span_is_impossible:
                cnt_neg += 1
            else:
                cnt_pos += 1

            yield feature

    print("Total number of instances: {} = pos {} neg {}".format(
        cnt_pos + cnt_neg, cnt_pos, cnt_neg))
Пример #4
0
 def tokenize(self, string):
     return encode_pieces(sp_model,
                          string,
                          return_unicode=False,
                          sample=False)
Пример #5
0
def _encode_ids(sp_model, text, sample=False):
    pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample)
    ids = [sp_model.PieceToId(piece) for piece in pieces]
    return pieces, ids