Пример #1
0
def get_nsl_data():
    dataset_names = ['NSLKDD/KDD%s.csv' % x for x in ['Train', 'Test']]
    feature_file = 'NSLKDD/feature_names.csv'
    headers, _, _, _ = nslkdd.get_feature_names(feature_file)
    symbolic_features = nslkdd.discovery_feature_volcabulary(dataset_names)
    integer_features = nslkdd.discovery_integer_map(feature_file,
                                                    dataset_names)
    continuous_features = nslkdd.discovery_continuous_map(
        feature_file, dataset_names)
    X, y = get_dataset(dataset_names[0], headers, 'nsl')
    test_X, test_y = get_dataset(dataset_names[1], headers, 'nsl')

    train_dict = dict()
    test_dict = dict()
    merged_inputs = []
    embeddings = []
    large_discrete = []
    merged_dim = 0
    merged_dim += build_embeddings(symbolic_features, integer_features,
                                   embeddings, large_discrete, merged_inputs,
                                   X, test_X, train_dict, test_dict, 'nsl')
    merged_dim += len(continuous_features)
    cont_component = build_continuous(continuous_features, merged_inputs, X,
                                      test_X, train_dict, test_dict, 'nsl')

    return train_dict, y, test_dict, test_y
Пример #2
0
def modality_net_nsl(hidden):
    dataset_names = ['NSLKDD/KDD%s.csv' % x for x in ['Train', 'Test']]
    feature_file = 'NSLKDD/feature_names.csv'
    headers, _, _, _ = nslkdd.get_feature_names(feature_file)
    symbolic_features = nslkdd.discovery_feature_volcabulary(dataset_names)
    integer_features = nslkdd.discovery_integer_map(feature_file,
                                                    dataset_names)
    continuous_features = nslkdd.discovery_continuous_map(
        feature_file, dataset_names)
    X, y = get_dataset(dataset_names[0], headers, 'nsl')
    test_X, test_y = get_dataset(dataset_names[1], headers, 'nsl')

    train_dict = dict()
    test_dict = dict()
    merged_inputs = []
    embeddings = []
    large_discrete = []
    merged_dim = 0
    merged_dim += build_embeddings(symbolic_features, integer_features,
                                   embeddings, large_discrete, merged_inputs,
                                   X, test_X, train_dict, test_dict, 'nsl')
    merged_dim += len(continuous_features)
    cont_component = build_continuous(continuous_features, merged_inputs, X,
                                      test_X, train_dict, test_dict, 'nsl')
    logger.debug('merge input_dim for NSLKDD dataset = %s' % merged_dim)

    merge = concatenate(embeddings + large_discrete + [cont_component],
                        name='concate_features_nsl')
    h1 = Dense(hidden[0], activation='relu', name='h1_nsl')(merge)
    dropout = Dropout(drop_prob)(h1)
    h2 = Dense(hidden[1], activation='relu', name='h2_nsl')(dropout)

    bn = BatchNormalization(name='bn_nsl')(h2)
    h3 = Dense(hidden[2], activation='sigmoid', name='sigmoid_nsl')(bn)
    sm = Dense(2, activation='softmax', name='output_nsl')(h3)

    model = Model(inputs=merged_inputs, outputs=sm)
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    model.summary()

    history = model.fit(train_dict, {'output_nsl': y}, batch_size, num_epochs)
    modnet['nsl_loss'].append(history.history['loss'])
    score = model.evaluate(train_dict, y, y.shape[0])
    logger.debug('modnet[nsl] train loss\t%.6f' % score[0])
    logger.info('modenet[nsl] train accu\t%.6f' % score[1])
    modnet['nsl']['train'].append(score[1])

    score = model.evaluate(test_dict, test_y, test_y.shape[0])
    logger.debug('modnet[nsl] test loss\t%.6f' % score[0])
    logger.info('modenet[nsl] test accu\t%.6f' % score[1])
    modnet['nsl']['test'].append(score[1])

    model.save_weights('ModalityNets/modnet_nsl.h5')
    # np.savez('ModalityNets/nsl_EX.npy', train=EX, test=EX_test)
    return merge, merged_inputs, train_dict, test_dict, y, test_y
Пример #3
0
def get_nsl_data():
    dataset_names = ['NSLKDD/KDD%s.csv' % x for x in ['Train', 'Test']]
    feature_file = 'NSLKDD/feature_names.csv'
    headers, _, _, _ = nslkdd.get_feature_names(feature_file)
    symbolic_features = nslkdd.discovery_feature_volcabulary(dataset_names)
    integer_features = nslkdd.discovery_integer_map(feature_file,
                                                    dataset_names)
    continuous_features = nslkdd.discovery_continuous_map(
        feature_file, dataset_names)
    X, y = get_dataset(dataset_names[0], headers, 'nsl')
    X_test, y_test = get_dataset(dataset_names[1], headers, 'nsl')

    train_dict = dict()
    test_dict = dict()
    input_layer = []
    embeddings = []
    large_discrete = []
    merged_dim = 0
    merged_dim += build_embeddings(symbolic_features, integer_features,
                                   embeddings, large_discrete, input_layer, X,
                                   X_test, train_dict, test_dict, 'nsl')
    merged_dim += len(continuous_features)
    cont_component = build_continuous(continuous_features, input_layer, X,
                                      X_test, train_dict, test_dict, 'nsl')
    pprint('merge input_dim for NSLKDD dataset = %s' % merged_dim)

    merged_layer = concatenate(embeddings + large_discrete + [cont_component],
                               name='concate_features_nsl')

    model = Model(inputs=input_layer, outputs=merged_layer)
    model.compile('adam', 'mse')
    model.summary()
    MX = model.predict(train_dict)
    MX_test = model.predict(test_dict)

    return MX, MX_test, y, y_test
Пример #4
0
        for key in results:
            logger.info("%s: %s" % (key, results[key]))

    predictions = []
    for x in m.predict(test_ib):
        predictions.append(x['probabilities'])

    conf_table = measure_prediction(np.array(predictions), ohe, model_dir)
    history['confusion_table'] = conf_table

    return history


os.environ['CUDA_VISIBLE_DEVICES'] = '0'
CSV_COLUMNS, symbolic_names, continuous_names, discrete_names = \
    get_feature_names('NSLKDD/feature_names.csv')
print(symbolic_names)
print(continuous_names)
print(discrete_names)
"""
quantile_names = []
for name in continuous_names + discrete_names:
    quantile_names.append(name + '_quantile')
"""
# Build wide columns
protocol = tf.feature_column.categorical_column_with_vocabulary_list(
    'protocol', get_categorical_values('protocol'))
service = tf.feature_column.categorical_column_with_vocabulary_list(
    'service', get_categorical_values('service'))
flag = tf.feature_column.categorical_column_with_vocabulary_list(
    'flag', get_categorical_values('flag'))