Пример #1
0
def main():
    for filename in os.listdir(input_dir):
        # Convert pdf to image files
        if filename.endswith('.pdf'):
            print(os.path.join(input_dir, filename))
            fullName = os.path.join(input_dir, filename)
            pages = convert_from_path(fullName, 500)
            image_counter = 1
            for page in pages:
                image_name = os.path.splitext(fullName)[0] + '_' + str(image_counter) + '.tiff'
                page.save(image_name, format='TIFF')
                image_counter += 1

    for filename in os.listdir(input_dir):
        img_ext = ['.png', '.jpg', '.jpeg', '.tiff']
        if filename.endswith(tuple(img_ext)):
            print(filename)
            fileAddress = os.path.join(input_dir, filename)
            img = process_image(fileAddress)

            # Recognize the text as string in image using pytesserct
            config = ''
            text = str(pytesseract.image_to_string(img, lang=langs, config=config))

            # Remove empty lines of text - s.strip() removes lines with spaces
            text = os.linesep.join([s for s in text.splitlines() if s.strip()])

            # Creating a text file to write the output
            outfile = os.path.join(output_dir, "out_" + os.path.splitext(filename)[0] + ".txt")
            with open(outfile, 'w') as text_file:
                print(text, file=text_file)
Пример #2
0
def get_CANVAS():
    folder = 'canvas_images'
    X = []
    Y = []
    for number in range(0, 10):
        for filename in os.listdir(folder + '/' + str(number)):
            img = cv2.imread(os.path.join(folder, str(number), filename),
                             cv2.IMREAD_GRAYSCALE)
            if img is not None:
                img = process_image(img)
                # TODO: is this reshape needed?
                X.append(img.reshape(image_size, image_size, 1))
                Y.append(number)

    X = np.pad(X, ((0, 0), (2, 2), (2, 2), (0, 0)), 'constant')
    X, Y = unison_shuffled_copies(np.array(X), np.array(Y))
    # split data in train, dev, test set
    train_size = int(X.shape[0] / 2)
    dev_size = int(X.shape[0] / 4)
    test_size = dev_size

    X_canvas_train = X[0:train_size, :]
    Y_canvas_train = Y[0:train_size]
    X_dev = X[train_size:(train_size + dev_size), :]
    Y_dev = Y[train_size:(train_size + dev_size)]
    X_test = X[train_size + dev_size:, :]
    Y_test = Y[train_size + dev_size:]

    return X_canvas_train, Y_canvas_train, X_dev, Y_dev, X_test, Y_test
Пример #3
0
def main():
    image_path = "/home/ananthu/projects/Document_Extraction/data/pan_16.jpg"
    binarized_image = process_image(image_path)
    binarized_image.save("pan.png")
    x = pytesseract.image_to_string(binarized_image)
    id_read("pan.png")
    data = pan_fill(x)
Пример #4
0
def predict(image_path, model, device, topk=5):

    idx_map = {j: v for v, j in model.class_to_idx.items()}
    image = preprocess.process_image(Image.open(image_path))
    image = torch.from_numpy(image).unsqueeze(0).to(device).float()
    model.eval()
    with torch.no_grad():
        output = model.forward(image)
    ps = torch.exp(output)

    probs, classes = ps.topk(topk)
    probs = probs.cpu().numpy()[0].tolist()
    classes = classes.cpu().numpy()[0].tolist()

    classes = [idx_map[i] for i in classes]

    return probs, classes
Пример #5
0
def train_generator(batch_size):
    while True:
        x_train = []
        y_train = []
        for i in range(batch_size):
            rand_index = random.randrange(len(df_train))
            df = df_train.iloc[[rand_index]]
            f = str(df['image_name'].item())
            tags = df['tags'].item()
            img = cv2.imread('data/train-jpg/{}.jpg'.format(f))
            img = process_image(img)
            targets = np.zeros(17)
            for t in tags.split(' '):
                targets[label_map[t]] = 1
            x_train.append(img)
            y_train.append(targets)
        x_train = np.array(x_train, np.float16) / 255.
        y_train = np.array(y_train, np.uint8)
        yield x_train, y_train
Пример #6
0
def authenticate():
    global images
    global same
    batch = [process_image(x, same).flatten() for x in images]

    batch = np.squeeze(np.array([batch]))
    print(batch.shape)
    print(labels.shape)
    batch = batch / 255

    saver.restore(
        sess,
        tf.train.latest_checkpoint(
            "/Users/kevin/Desktop/slohacks2019/models/"))

    pr = y_conv.eval(feed_dict={x: batch, y_: labels[0], keep_prob: 1.0})
    print(pr, max(pr))
    # thing = json.loads(json.dumps({'same':max(pr)}))
    return "hii"
Пример #7
0
def recognize():
    request_data = request.get_json()
    imgbase64 = request_data['data']
    encoded_data = imgbase64.split(',')[1]
    filename = 'canvas_image.png'
    imgdata = base64.b64decode(encoded_data)
    with open(filename, 'wb') as f:
        f.write(imgdata)

    img = cv2.imread('canvas_image.png', cv2.IMREAD_GRAYSCALE)
    img = process_image(img)
    img = img.reshape(1, 28, 28, 1) / 255.
    img = np.pad(img, ((0, 0), (2, 2), (2, 2), (0, 0)), 'constant')

    pred = sess.run(Y_hat, feed_dict={X: img})
    pred_softmax = pred / pred.sum(axis=1, keepdims=True)
    pred = np.argmax(pred_softmax, axis=1)

    return jsonify({'number': int(pred[0])}), 200
Пример #8
0
def generatePickle():
    data = []
    categories = [
        'binata', 'buhay', 'dalaga', 'eksamen', 'ewan', 'gunita', 'halaman',
        'hapon', 'isip', 'kailangan', 'karaniwan', 'kislap', 'larawan',
        'mabuti', 'noon', 'opo', 'papaano', 'patuloy', 'roon', 'subalit',
        'talaga', 'ugali', 'wasto'
    ]

    dir = 'C:\\Users\\Scadoodie\\Desktop\\Braille2C_Datasets'

    print('Generating pickle model...')

    for category in categories:
        path = os.path.join(dir, category)
        print("Current directory being pre-processed: ", path)
        label = categories.index(category)

        for img in os.listdir(path):
            imgpath = os.path.join(path, img)
            orig_img = cv.imread(imgpath, 1)  #Load image in Color

            try:
                image = process_image(orig_img)
                data.append([image, label])

            except Exception as e:
                pass

    if (len(data) <= 0):
        print("Data is empty")
    else:
        #Data length should contain 1180 images
        print("Success! braille-model.pickle generated.")
        print("Data Length: ", len(data))
        pick_in = open('braille-model.pickle', 'wb')
        pickle.dump(data, pick_in)
        pick_in.close()
Пример #9
0
 def build_sequence(self, frames):
     """Given a set of frames (filenames), build our sequence."""
     return [process_image(x, self.image_shape) for x in frames]
Пример #10
0
    train(x_train=x_train, y_train=y_train, x_val=x_val, y_val=y_val)
    test(x_test=x_test, y_test=y_test)

model = load_model('gesture-model.h5')
predicted_text = ""
cap = cv2.VideoCapture(0)
left_margin = 100

while True:
    ret, frame = cap.read()
    frame = cv2.flip(frame, 1)
    cv2.rectangle(frame, (350, 150), (600, 400), (0, 255, 0))

    hand_frame = frame[150:400, 350:600]
    processed = process_image(hand_frame)
    processed = np.reshape(processed,
                           (1, processed.shape[0], processed.shape[1], 1))

    text_area = np.zeros((480, 480, 3), dtype=np.uint8)

    predicted = model.predict(processed)
    predicted_label = get_label(np.argmax(predicted))

    predicted_text = predicted_label

    cv2.putText(text_area, predicted_text, (4, 100), cv2.FONT_HERSHEY_COMPLEX,
                2, (255, 255, 255))

    frame = np.hstack((frame, text_area))
Пример #11
0
from preprocess import process_image
from generateModel import generate, getPickle, updateModel
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, r2_score, recall_score, precision_score, f1_score

categories = [
    'binata', 'buhay', 'dalaga', 'eksamen', 'ewan', 'gunita', 'halaman',
    'hapon', 'isip', 'kailangan', 'karaniwan', 'kislap', 'larawan', 'mabuti',
    'noon', 'opo', 'papaano', 'patuloy', 'roon', 'subalit', 'talaga', 'ugali',
    'wasto'
]

test_image_path = "..\\test-images\\test1.png"

image = cv.imread(test_image_path, 1)
image = process_image(image)
image = np.expand_dims(image, 0)

if os.path.isfile('braille-model.pickle'):
    print('Model found...')
    pickle = getPickle()
    model, xtrain, xtest, ytrain, ytest = updateModel(pickle)

    print('Predicting xtest...')

    prediction = model.predict(image)
    accuracy = model.score(xtest, ytest)

    print('Prediction Integer is :', prediction[0])
    print('Prediction is :', categories[prediction[0]])
    print(