meldir=str(config_manager.train_datadir / 'mels'),
    num_samples=config['n_samples'])  # (phonemes, mel)
val_samples, _ = load_files(
    metafile=str(config_manager.train_datadir / 'test_metafile.txt'),
    meldir=str(config_manager.train_datadir / 'mels'),
    num_samples=config['n_samples'])  # (phonemes, text, mel)

# get model, prepare data for model, create datasets
model = config_manager.get_model()
config_manager.compile_model(model)
data_prep = DataPrepper(config=config, tokenizer=model.text_pipeline.tokenizer)

test_list = [data_prep(s) for s in val_samples]
train_dataset = Dataset(samples=train_samples,
                        preprocessor=data_prep,
                        batch_size=config['batch_size'],
                        mel_channels=config['mel_channels'],
                        shuffle=True)
val_dataset = Dataset(samples=val_samples,
                      preprocessor=data_prep,
                      batch_size=config['batch_size'],
                      mel_channels=config['mel_channels'],
                      shuffle=False)

# create logger and checkpointer and restore latest model

summary_manager = SummaryManager(model=model,
                                 log_dir=config_manager.log_dir,
                                 config=config)
checkpoint = tf.train.Checkpoint(step=tf.Variable(1),
                                 optimizer=model.optimizer,
Пример #2
0
        metafile=str(train_meta),
        meldir=str(meldir),
        num_samples=config['n_samples'])  # (phonemes, mel)
    val_samples, _ = load_files(
        metafile=str(test_meta),
        meldir=str(meldir),
        num_samples=config['n_samples'])  # (phonemes, text, mel)

    # get model, prepare data for model, create datasets

    data_prep = DataPrepper(config=config,
                            tokenizer=model.text_pipeline.tokenizer)
    script_batch_size = 5 * config['batch_size']  # faster parallel computation
    train_dataset = Dataset(samples=train_samples,
                            preprocessor=data_prep,
                            batch_size=script_batch_size,
                            shuffle=False,
                            drop_remainder=False)
    val_dataset = Dataset(samples=val_samples,
                          preprocessor=data_prep,
                          batch_size=script_batch_size,
                          shuffle=False,
                          drop_remainder=False)
    if model.r != 1:
        print(
            f"ERROR: model's reduction factor is greater than 1, check config. (r={model.r}"
        )
    # identify last decoder block
    n_layers = len(config_manager.config['decoder_num_heads'])
    n_dense = int(config_manager.config['decoder_dense_blocks'])
    n_convs = int(n_layers - n_dense)
Пример #3
0
config_manager = ConfigManager(config_path=args.config,
                               model_kind='forward',
                               session_name=args.session_name)
config = config_manager.config
config_manager.create_remove_dirs(clear_dir=args.clear_dir,
                                  clear_logs=args.clear_logs,
                                  clear_weights=args.clear_weights)
config_manager.dump_config()
config_manager.print_config()

train_data_list = build_file_list(config_manager.train_datadir /
                                  'forward_data/train')
dataprep = ForwardDataPrepper()
train_dataset = Dataset(samples=train_data_list,
                        mel_channels=config['mel_channels'],
                        preprocessor=dataprep,
                        batch_size=config['batch_size'],
                        shuffle=True)
val_data_list = build_file_list(config_manager.train_datadir /
                                'forward_data/val')
val_dataset = Dataset(samples=val_data_list,
                      mel_channels=config['mel_channels'],
                      preprocessor=dataprep,
                      batch_size=config['batch_size'],
                      shuffle=False)

# get model, prepare data for model, create datasets
model = config_manager.get_model()
config_manager.compile_model(model)

# create logger and checkpointer and restore latest model