Пример #1
0
def main(_):
    with tf.Graph().as_default():
        out_shape = [FLAGS.train_image_size] * 2

        image_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
        shape_input = tf.placeholder(tf.int32, shape=(2, ))

        features = ssd_preprocessing.preprocess_for_eval(
            image_input,
            out_shape,
            data_format=FLAGS.data_format,
            output_rgb=False)
        features = tf.expand_dims(features, axis=0)

        anchor_creator = anchor_manipulator.AnchorCreator(
            out_shape,
            layers_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3),
                           (1, 1)],
            anchor_scales=[(0.1, ), (0.2, ), (0.375, ), (0.55, ), (0.725, ),
                           (0.9, )],
            extra_anchor_scales=[(0.1414, ), (0.2739, ), (0.4541, ),
                                 (0.6315, ), (0.8078, ), (0.9836, )],
            anchor_ratios=[(2., .5),
                           (2., 3., .5, 0.3333), (2., 3., .5, 0.3333),
                           (2., 3., .5, 0.3333), (2., .5), (2., .5)],
            layer_steps=[8, 16, 32, 64, 100, 300])
        all_anchors, all_num_anchors_depth, all_num_anchors_spatial = anchor_creator.get_all_anchors(
        )

        anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(
            allowed_borders=[1.0] * 6,
            positive_threshold=None,
            ignore_threshold=None,
            prior_scaling=[0.1, 0.1, 0.2, 0.2])

        decode_fn = lambda pred: anchor_encoder_decoder.ext_decode_all_anchors(
            pred, all_anchors, all_num_anchors_depth, all_num_anchors_spatial)

        with tf.variable_scope(FLAGS.model_scope,
                               default_name=None,
                               values=[features],
                               reuse=tf.AUTO_REUSE):
            backbone = ssd_net.VGG16Backbone(FLAGS.data_format)
            feature_layers = backbone.forward(features, training=False)
            location_pred, cls_pred = ssd_net.multibox_head(
                feature_layers,
                FLAGS.num_classes,
                all_num_anchors_depth,
                data_format=FLAGS.data_format)
            if FLAGS.data_format == 'channels_first':
                cls_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred
                ]
                location_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred
                ]

            cls_pred = [
                tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred
            ]
            location_pred = [
                tf.reshape(pred, [-1, 4]) for pred in location_pred
            ]

            cls_pred = tf.concat(cls_pred, axis=0)
            location_pred = tf.concat(location_pred, axis=0)

        with tf.device('/cpu:0'):
            bboxes_pred = decode_fn(location_pred)
            bboxes_pred = tf.concat(bboxes_pred, axis=0)
            selected_bboxes, selected_scores = parse_by_class(
                cls_pred, bboxes_pred, FLAGS.num_classes,
                FLAGS.select_threshold, FLAGS.min_size, FLAGS.keep_topk,
                FLAGS.nms_topk, FLAGS.nms_threshold)

            labels_list = []
            scores_list = []
            bboxes_list = []
            for k, v in selected_scores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
                scores_list.append(v)
                bboxes_list.append(selected_bboxes[k])
            all_labels = tf.concat(labels_list, axis=0)
            all_scores = tf.concat(scores_list, axis=0)
            all_bboxes = tf.concat(bboxes_list, axis=0)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)

            saver.restore(sess, get_checkpoint())

            np_image = imread('./demo/test.jpg')
            labels_, scores_, bboxes_ = sess.run(
                [all_labels, all_scores, all_bboxes],
                feed_dict={
                    image_input: np_image,
                    shape_input: np_image.shape[:-1]
                })

            img_to_draw = draw_toolbox.bboxes_draw_on_img(np_image,
                                                          labels_,
                                                          scores_,
                                                          bboxes_,
                                                          thickness=2)
            imsave('./demo/test_out.jpg', img_to_draw)
def main(_):
    with tf.Graph().as_default():
        out_shape = [FLAGS.train_image_size] * 2

        with tf.name_scope('define_input'):
            image_input = tf.placeholder(tf.uint8,
                                         shape=(None, None, 3),
                                         name='image_input')

        features = ssd_preprocessing.preprocess_for_eval(
            image_input,
            out_shape,
            data_format=FLAGS.data_format,
            output_rgb=False)
        features = tf.expand_dims(features, axis=0)

        anchor_creator = anchor_manipulator.AnchorCreator(
            out_shape,
            layers_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3),
                           (1, 1)],
            anchor_scales=[(0.1, ), (0.2, ), (0.375, ), (0.55, ), (0.725, ),
                           (0.9, )],
            extra_anchor_scales=[(0.1414, ), (0.2739, ), (0.4541, ),
                                 (0.6315, ), (0.8078, ), (0.9836, )],
            anchor_ratios=[(1., 2., .5), (1., 2., 3., .5, 0.3333),
                           (1., 2., 3., .5, 0.3333), (1., 2., 3., .5, 0.3333),
                           (1., 2., .5), (1., 2., .5)],
            #anchor_ratios = [(2., .5), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333),
            #(2., 3., .5, 0.3333), (2., .5), (2., .5)],
            layer_steps=[8, 16, 32, 64, 100, 300])
        all_anchors, all_num_anchors_depth, all_num_anchors_spatial = anchor_creator.get_all_anchors(
        )

        anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(
            allowed_borders=[1.0] * 6,
            positive_threshold=None,
            ignore_threshold=None,
            prior_scaling=[0.1, 0.1, 0.2, 0.2])

        def decode_fn(pred):
            return anchor_encoder_decoder.ext_decode_all_anchors(
                pred, all_anchors, all_num_anchors_depth,
                all_num_anchors_spatial)

        with tf.variable_scope(FLAGS.model_scope,
                               default_name=None,
                               values=[features],
                               reuse=tf.AUTO_REUSE):
            backbone = ssd_net.VGG16Backbone(FLAGS.data_format)
            feature_layers = backbone.forward(features, training=False)
            location_pred, cls_pred = ssd_net.multibox_head(
                feature_layers,
                FLAGS.num_classes,
                all_num_anchors_depth,
                data_format=FLAGS.data_format)
            if FLAGS.data_format == 'channels_first':
                cls_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred
                ]
                location_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred
                ]

            cls_pred = [
                tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred
            ]
            location_pred = [
                tf.reshape(pred, [-1, 4]) for pred in location_pred
            ]

            with tf.variable_scope('cls_pred'):
                cls_pred = tf.concat(cls_pred, axis=0)
            with tf.variable_scope('location_pred'):
                location_pred = tf.concat(location_pred, axis=0)

        with tf.device('/cpu:0'):
            bboxes_pred = decode_fn(location_pred)
            bboxes_pred = tf.concat(bboxes_pred, axis=0)
            selected_bboxes, selected_scores = parse_by_class(
                cls_pred, bboxes_pred, FLAGS.num_classes,
                FLAGS.select_threshold, FLAGS.min_size, FLAGS.keep_topk,
                FLAGS.nms_topk, FLAGS.nms_threshold)

            labels_list = []
            scores_list = []
            bboxes_list = []
            for k, v in selected_scores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
                scores_list.append(v)
                bboxes_list.append(selected_bboxes[k])
            all_labels = tf.concat(labels_list, axis=0)
            all_scores = tf.concat(scores_list, axis=0)
            all_bboxes = tf.concat(bboxes_list, axis=0)

        saver = tf.train.Saver()
        '''
        config = tf.ConfigProto(allow_soft_placement=True, inter_op_parallelism_threads=1, intra_op_parallelism_threads=1)
        config.mlu_options.data_parallelism = 1
        config.mlu_options.model_parallelism = 1
        config.mlu_options.core_num = 1
        config.mlu_options.core_version = 'MLU270'
        config.mlu_options.precision = 'float'
        with tf.Session(config = config) as sess:
        '''
        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)

            saver.restore(sess, get_checkpoint())

            np_image = imread('demo/test.jpg')
            labels_, scores_, bboxes_ = sess.run(
                [all_labels, all_scores, all_bboxes],
                feed_dict={image_input: np_image})
            #print('labels_', labels_, type(labels_), labels_.shape)
            #print('scores_', scores_, type(scores_), scores_.shape)
            #print('bboxes_', bboxes_, type(bboxes_), bboxes_.shape, bboxes_.shape[0])

            img_to_draw = draw_toolbox.bboxes_draw_on_img(np_image,
                                                          labels_,
                                                          scores_,
                                                          bboxes_,
                                                          thickness=2)
            imsave('demo/test_out.jpg', img_to_draw)
            saver.save(sess, 'model/ssd300_vgg16/ssd300_vgg16', global_step=0)
Пример #3
0
def main(_):
    with tf.Graph().as_default():
        out_shape = [FLAGS.train_image_size] * 2

        image_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
        shape_input = tf.placeholder(tf.int32, shape=(2, ))

        features, output_shape = ssd_preprocessing.preprocess_for_eval(
            image_input,
            out_shape,
            data_format=FLAGS.data_format,
            output_rgb=False)
        features = tf.expand_dims(features, axis=0)
        output_shape = tf.expand_dims(output_shape, axis=0)

        all_anchor_scales = [(30., ), (60., ), (112.5, ), (165., ), (217.5, ),
                             (270., )]
        all_extra_scales = [(42.43, ), (82.17, ), (136.23, ), (189.45, ),
                            (242.34, ), (295.08, )]
        all_anchor_ratios = [(1., 2., .5), (1., 2., 3., .5, 0.3333),
                             (1., 2., 3., .5, 0.3333),
                             (1., 2., 3., .5, 0.3333), (1., 2., .5),
                             (1., 2., .5)]
        # all_anchor_ratios = [(2., .5), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., .5), (2., .5)]

        with tf.variable_scope(FLAGS.model_scope,
                               default_name=None,
                               values=[features],
                               reuse=tf.AUTO_REUSE):
            backbone = ssd_net.VGG16Backbone(FLAGS.data_format)
            feature_layers = backbone.forward(features, training=False)
            with tf.device('/cpu:0'):
                anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(
                    positive_threshold=None,
                    ignore_threshold=None,
                    prior_scaling=[0.1, 0.1, 0.2, 0.2])

                if FLAGS.data_format == 'channels_first':
                    all_layer_shapes = [
                        tf.shape(feat)[2:] for feat in feature_layers
                    ]
                else:
                    all_layer_shapes = [
                        tf.shape(feat)[1:3] for feat in feature_layers
                    ]
                all_layer_strides = [8, 16, 32, 64, 100, 300]
                total_layers = len(all_layer_shapes)
                anchors_height = list()
                anchors_width = list()
                anchors_depth = list()
                for ind in range(total_layers):
                    _anchors_height, _anchors_width, _anchor_depth = anchor_encoder_decoder.get_anchors_width_height(
                        all_anchor_scales[ind],
                        all_extra_scales[ind],
                        all_anchor_ratios[ind],
                        name='get_anchors_width_height{}'.format(ind))
                    anchors_height.append(_anchors_height)
                    anchors_width.append(_anchors_width)
                    anchors_depth.append(_anchor_depth)
                anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax, _ = anchor_encoder_decoder.get_all_anchors(
                    tf.squeeze(output_shape, axis=0), anchors_height,
                    anchors_width, anchors_depth, [0.5] * total_layers,
                    all_layer_shapes, all_layer_strides, [0.] * total_layers,
                    [False] * total_layers)
            location_pred, cls_pred = ssd_net.multibox_head(
                feature_layers,
                FLAGS.num_classes,
                anchors_depth,
                data_format=FLAGS.data_format)
            if FLAGS.data_format == 'channels_first':
                cls_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred
                ]
                location_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred
                ]

            cls_pred = [
                tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred
            ]
            location_pred = [
                tf.reshape(pred, [-1, 4]) for pred in location_pred
            ]

            cls_pred = tf.concat(cls_pred, axis=0)
            location_pred = tf.concat(location_pred, axis=0)

        with tf.device('/cpu:0'):
            bboxes_pred = anchor_encoder_decoder.decode_anchors(
                location_pred, anchors_ymin, anchors_xmin, anchors_ymax,
                anchors_xmax)
            selected_bboxes, selected_scores = bbox_util.parse_by_class(
                tf.squeeze(output_shape, axis=0), cls_pred, bboxes_pred,
                FLAGS.num_classes, FLAGS.select_threshold, FLAGS.min_size,
                FLAGS.keep_topk, FLAGS.nms_topk, FLAGS.nms_threshold)

            labels_list = []
            scores_list = []
            bboxes_list = []
            for k, v in selected_scores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
                scores_list.append(v)
                bboxes_list.append(selected_bboxes[k])
            all_labels = tf.concat(labels_list, axis=0)
            all_scores = tf.concat(scores_list, axis=0)
            all_bboxes = tf.concat(bboxes_list, axis=0)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)

            saver.restore(sess, get_checkpoint())

            np_image = imread('./demo/test.jpg')
            labels_, scores_, bboxes_, output_shape_ = sess.run(
                [all_labels, all_scores, all_bboxes, output_shape],
                feed_dict={
                    image_input: np_image,
                    shape_input: np_image.shape[:-1]
                })
            bboxes_[:,
                    0] = bboxes_[:, 0] * np_image.shape[0] / output_shape_[0,
                                                                           0]
            bboxes_[:,
                    1] = bboxes_[:, 1] * np_image.shape[1] / output_shape_[0,
                                                                           1]
            bboxes_[:,
                    2] = bboxes_[:, 2] * np_image.shape[0] / output_shape_[0,
                                                                           0]
            bboxes_[:,
                    3] = bboxes_[:, 3] * np_image.shape[1] / output_shape_[0,
                                                                           1]

            img_to_draw = draw_toolbox.bboxes_draw_on_img(np_image,
                                                          labels_,
                                                          scores_,
                                                          bboxes_,
                                                          thickness=2)
            imsave('./demo/test_out.jpg', img_to_draw)
Пример #4
0
def ssd(path):
# def ssd_res(img_path):
    with tf.Graph().as_default():
        out_shape = [FLAGS.train_image_size] * 2

        image_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
        shape_input = tf.placeholder(tf.int32, shape=(2,))

        features = ssd_preprocessing.preprocess_for_eval(image_input, out_shape, data_format=FLAGS.data_format, output_rgb=False)
        features = tf.expand_dims(features, axis=0)

        anchor_creator = anchor_manipulator.AnchorCrealog_device_placementtor(out_shape,
                                                    layers_shapes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],
                                                    anchor_scales = [(0.1,), (0.2,), (0.375,), (0.55,), (0.725,), (0.9,)],
                                                    extra_anchor_scales = [(0.1414,), (0.2739,), (0.4541,), (0.6315,), (0.8078,), (0.9836,)],
                                                    anchor_ratios = [(1., 2., .5), (1., 2., 3., .5, 0.3333), (1., 2., 3., .5, 0.3333), (1., 2., 3., .5, 0.3333), (1., 2., .5), (1., 2., .5)],
                                                    #anchor_ratios = [(2., .5), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., .5), (2., .5)],
                                                    layer_steps = [8, 16, 32, 64, 100, 300])
        all_anchors, all_num_anchors_depth, all_num_anchors_spatial = anchor_creator.get_all_anchors()

        anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(allowed_borders = [1.0] * 6,
                                                            positive_threshold = None,
                                                            ignore_threshold = None,
                                                            prior_scaling=[0.1, 0.1, 0.2, 0.2])

        decode_fn = lambda pred : anchor_encoder_decoder.ext_decode_all_anchors(pred, all_anchors, all_num_anchors_depth, all_num_anchors_spatial)

        with tf.variable_scope(FLAGS.model_scope, default_name=None, values=[features], reuse=tf.AUTO_REUSE):
            backbone = ssd_net.VGG16Backbone(FLAGS.data_format)
            feature_layers = backbone.forward(features, training=False)
            location_pred, cls_pred = ssd_net.multibox_head(feature_layers, FLAGS.num_classes, all_num_anchors_depth, data_format=FLAGS.data_format)
            if FLAGS.data_format == 'channels_first':
                cls_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred]
                location_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred]

            cls_pred = [tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred]
            location_pred = [tf.reshape(pred, [-1, 4]) for pred in location_pred]

            cls_pred = tf.concat(cls_pred, axis=0)
            location_pred = tf.concat(location_pred, axis=0)

        with tf.device('/cpu:0'):
            bboxes_pred = decode_fn(location_pred)
            bboxes_pred = tf.concat(bboxes_pred, axis=0)


            selected_bboxes, selected_scores = parse_by_class(cls_pred, bboxes_pred,
                                                            FLAGS.num_classes, FLAGS.select_threshold, FLAGS.min_size,
                                                            FLAGS.keep_topk, FLAGS.nms_topk, FLAGS.nms_threshold)



            labels_list = []
            scores_list = []
            bboxes_list = []
            for k, v in selected_scores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
                scores_list.append(v)
                bboxes_list.append(selected_bboxes[k])
            all_labels = tf.concat(labels_list, axis=0)
            all_scores = tf.concat(scores_list, axis=0)
            all_bboxes = tf.concat(bboxes_list, axis=0)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)
            saver.restore(sess, get_checkpoint())

            np_image = imread(path)
            im = Image.open(path)
            print(np_image.shape)

            labels_, scores_, bboxes_ = sess.run([all_labels, all_scores, all_bboxes], feed_dict = {image_input : np_image, shape_input : np_image.shape[:-1]})

            all_bboxes = sess.run([bboxes_pred], feed_dict = {image_input : np_image, shape_input : np_image.shape[:-1]})




            shape = np_image.shape
            for j in range(len(all_bboxes[0])):
                all_box = all_bboxes[0][j]
                p1 = (int(all_box[0] * shape[0]), int(all_box[1] * shape[1]))
                p2 = (int(all_box[2] * shape[0]), int(all_box[3] * shape[1]))
                if (p2[0] - p1[0] < 1) or (p2[1] - p1[1] < 1):
                    continue
                x1 = p1[1]
                y1 = p1[0]
                x2 = p2[1]
                y2 = p2[0]

                obj = im.crop((x1, y1, x2, y2))

                num_str = str(j)
                num_str = num_str.zfill(5)
                obj.save('./res/img/{}.jpg'.format(num_str))

                cor = str(x1) + ',' + str(y1) + ',' + str(x2) + ',' +str(y2)
                f2 = open('./res/cor.txt', 'a')
                f2.write(cor + '\n')


                zero_str = str(0)
                f = open('./res/label.txt', 'a')
                f.write(num_str + ',' + zero_str + '\n')
                f.close()

            num1 = 0
            for i in range(bboxes_.shape[0]):
                bbox = bboxes_[i]
                p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
                p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
                num1 = num1 + 1

                if (p2[0] - p1[0] < 1) or (p2[1] - p1[1] < 1):
                    continue
                x1 = p1[1]
                y1 = p1[0]
                x2 = p2[1]
                y2 = p2[0]



                cor1 = str(x1) + ',' + str(y1) + ',' + str(x2) + ',' + str(y2)


                num = 0
                with open('./res/cor.txt', 'r') as f11, open('./res/label.txt', '+r') as f22:
                    for line in f11:
                        num = num + 1
                        if cor1 in line:
                            num11 = str(num)
                            print(num11 + '\n')

                            num11 = num11.zfill(5)
                            ber = num11 + ',' + str(0)
                            aft = num11 + ',' + str(labels_[i])

                            t = f22.read()
                            t = t.replace(ber, aft)
                            f22.seek(0, 0)
                            f22.write(t)
            print(num1)

            img_to_draw = draw_toolbox.bboxes_draw_on_img(np_image, labels_, scores_, bboxes_, thickness=2)
            imsave('./demo/out.jpg', img_to_draw)
Пример #5
0
def main(_):
    with tf.Graph().as_default():
        out_shape = [FLAGS.train_image_size] * 2

        image_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
        shape_input = tf.placeholder(tf.int32, shape=(2, ))

        features = ssd_preprocessing.preprocess_for_eval(
            image_input,
            out_shape,
            data_format=FLAGS.data_format,
            output_rgb=False)
        features = tf.expand_dims(features, axis=0)

        anchor_creator = anchor_manipulator.AnchorCreator(
            out_shape,
            layers_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3),
                           (1, 1)],
            anchor_scales=[(0.1, ), (0.2, ), (0.375, ), (0.55, ), (0.725, ),
                           (0.9, )],
            extra_anchor_scales=[(0.1414, ), (0.2739, ), (0.4541, ),
                                 (0.6315, ), (0.8078, ), (0.9836, )],
            anchor_ratios=[(1., 2., .5), (1., 2., 3., .5, 0.3333),
                           (1., 2., 3., .5, 0.3333), (1., 2., 3., .5, 0.3333),
                           (1., 2., .5), (1., 2., .5)],
            #anchor_ratios = [(2., .5), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., .5), (2., .5)],
            layer_steps=[8, 16, 32, 64, 100, 300])
        all_anchors, all_num_anchors_depth, all_num_anchors_spatial = anchor_creator.get_all_anchors(
        )

        anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(
            allowed_borders=[1.0] * 6,
            positive_threshold=None,
            ignore_threshold=None,
            prior_scaling=[0.1, 0.1, 0.2, 0.2])

        decode_fn = lambda pred: anchor_encoder_decoder.ext_decode_all_anchors(
            pred, all_anchors, all_num_anchors_depth, all_num_anchors_spatial)

        with tf.variable_scope(FLAGS.model_scope,
                               default_name=None,
                               values=[features],
                               reuse=tf.AUTO_REUSE):
            backbone = ssd_net.VGG16Backbone(FLAGS.data_format)
            feature_layers = backbone.forward(features, training=False)
            location_pred, cls_pred = ssd_net.multibox_head(
                feature_layers,
                FLAGS.num_classes,
                all_num_anchors_depth,
                data_format=FLAGS.data_format)
            if FLAGS.data_format == 'channels_first':
                cls_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred
                ]
                location_pred = [
                    tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred
                ]

            cls_pred = [
                tf.reshape(pred, [-1, FLAGS.num_classes]) for pred in cls_pred
            ]
            location_pred = [
                tf.reshape(pred, [-1, 4]) for pred in location_pred
            ]

            cls_pred = tf.concat(cls_pred, axis=0)
            location_pred = tf.concat(location_pred, axis=0)

        with tf.device('/cpu:0'):
            bboxes_pred = decode_fn(location_pred)
            bboxes_pred = tf.concat(bboxes_pred, axis=0)
            selected_bboxes, selected_scores = parse_by_class(
                cls_pred, bboxes_pred, FLAGS.num_classes,
                FLAGS.select_threshold, FLAGS.min_size, FLAGS.keep_topk,
                FLAGS.nms_topk, FLAGS.nms_threshold)

            labels_list = []
            scores_list = []
            bboxes_list = []
            for k, v in selected_scores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
                scores_list.append(v)
                bboxes_list.append(selected_bboxes[k])
            all_labels = tf.concat(labels_list, axis=0)
            all_scores = tf.concat(scores_list, axis=0)
            all_bboxes = tf.concat(bboxes_list, axis=0)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)

            saver.restore(sess, get_checkpoint())

            for i in range(video_frame_cnt):
                ret, img_ori = vid.read()

                # height_ori, width_ori = img_ori.shape[:2]
                # img = cv2.resize(img_ori, tuple(args.new_size))
                img = cv2.cvtColor(img_ori, cv2.COLOR_BGR2RGB)
                np_image = np.asarray(img, np.float32)

                start_time = time.time()
                labels_, scores_, bboxes_ = sess.run(
                    [all_labels, all_scores, all_bboxes],
                    feed_dict={
                        image_input: np_image,
                        shape_input: np_image.shape[:-1]
                    })
                end_time = time.time()

                img_to_draw = draw_toolbox.bboxes_draw_on_img(np_image,
                                                              labels_,
                                                              scores_,
                                                              bboxes_,
                                                              thickness=2)
                cv2.putText(img_to_draw,
                            '{:.2f}ms'.format((end_time - start_time) * 1000),
                            (40, 40),
                            0,
                            fontScale=1,
                            color=(0, 255, 0),
                            thickness=2)

                imsave('./test_out.jpg', img_to_draw)

                new_img = cv2.imread('./test_out.jpg')
                cv2.imshow('image', new_img)

                videoWriter.write(new_img)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

            vid.release()
            videoWriter.release()