def evaluate(sess, x_, y_): """评估在某一数据上的准确率和损失""" data_len = len(x_) batch_eval = batch_iter(x_, y_, 128) total_loss = 0.0 total_acc = 0.0 for x_batch, y_batch in batch_eval: batch_len = len(x_batch) feed_dict = feed_data(x_batch, y_batch, 1.0) loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict) total_loss += loss * batch_len total_acc += acc * batch_len return total_loss / data_len, total_acc / data_len
def evalute_dev_set(run_number, model_number): checkpoint_file = cwd + "/runs/{}/checkpoints/model-{}".format( run_number, model_number) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph( "{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input = graph.get_operation_by_name("true_images").outputs[0] # Tensors we want to evaluate scores = graph.get_operation_by_name( "discr/output/score_pred" ).outputs[ 0] #this has to be changed to output/score_pred with the new version of model # Generate batches for evaluation batches = preprocessing.batch_iter(scored_data, FLAGS.batch_size, 1, shuffle=False) # Predicting the score from the model acc = 0 n = 0 for test_batch in batches: batch_imgs = np.reshape(np.concatenate(test_batch[:, 0]), (-1, 1000, 1000)) batch_score = np.reshape(test_batch[:, 1], (-1)) batch_pred_scores = sess.run(scores, {input: batch_imgs}) for i in range(len(batch_pred_scores)): tmp = max(0.0, min(8.0, batch_pred_scores[i])) acc += abs(tmp - batch_score[i]) n += 1 # Return the MAE on the dev set. return (acc / n)
saver = tf.train.import_meta_graph(meta_graph_path) saver.restore(sess, checkpoint_folder) graph = tf.get_default_graph() graph_input_y = graph.get_tensor_by_name("input_y:0") graph_input_x = graph.get_tensor_by_name("input_x:0") graph_batch_size = graph.get_tensor_by_name("batch_size:0") graph_predictions = graph.get_tensor_by_name("output_layer/predictions:0") graph_losses = graph.get_tensor_by_name("output_layer/losses/Reshape_2:0") nlpdata = datasets.NLUProject1Dataset() nlpdatatest = datasets.NLUProject1TestDataset() print(len(nlpdatatest.test_x)) batches = prep.batch_iter(list(zip(nlpdatatest.test_x, nlpdatatest.test_y)), con.BATCH_SIZE, con.n_epochs) #print(len(batches)) for batch in batches: x_batch, y_batch = zip(*batch) feed_dict = { graph_input_x: x_batch, graph_input_y: y_batch, graph_batch_size: len(x_batch) } losses, input_y = sess.run( [graph_losses, graph_input_y], feed_dict) time_str = datetime.datetime.now().isoformat()
step, summaries, loss, accuracy = sess.run( [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict) acc.append(accuracy) losses.append(loss) time_str = datetime.datetime.now().isoformat() print("batch " + str(i + 1) + " in dev >>" + " {}: loss {:g}, acc {:g}".format( time_str, loss, accuracy)) if writer: writer.add_summary(summaries, step) print("\nMean accuracy=" + str(sum(acc) / len(acc))) print("Mean loss=" + str(sum(losses) / len(losses))) # Generate batches in one-hot-encoding format batches = preprocessing.batch_iter(x_train, y_train, FLAGS.batch_size, FLAGS.num_epochs) # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_step(x_dev, y_dev, writer=dev_summary_writer) print("") if current_step % FLAGS.checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path))
sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input = graph.get_operation_by_name("true_images").outputs[0] # Tensors we want to evaluate scores = graph.get_operation_by_name( "discr/output/score_pred").outputs[0] # Generate batches from the query dataset for one epoch batches = preprocessing.batch_iter(query_data, FLAGS.batch_size, 1, shuffle=False) # If necessary Create the directory predictions timestamp = str(run_number) out_dir = os.path.abspath(os.path.join(os.path.curdir, "predictions")) if not os.path.exists(out_dir): os.makedirs(out_dir) # Defining the csv file name out_file = os.path.abspath( os.path.join(out_dir, "{}".format(timestamp))) print("Writing to {}\n".format(out_file)) with open("{}.csv".format(out_file), "w") as file: # Create the required header
allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name x = graph.get_operation_by_name("X").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we wanna evaluate predictions = graph.get_operation_by_name("accuracy/predictions").outputs[0] # Generate batches for one epoch batches = preprocessing.batch_iter(x_test, FLAGS.batch_size, 1, shuffle=False) # Collect the predictions here all_predictions = [] for x_test_batch in batches: batch_pred = sess.run(predictions, {x: x_test_batch, dropout_keep_prob: 1.0}) all_predictions = np.concatenate([all_predictions, batch_pred]) correct_pred = float(sum(all_predictions == y_test)) print("Total number of text examples: {}".format(len(y_test))) print("Accuracy: {:g}".format(correct_pred/float(len(y_test))))
sess.run(assign_op) W_fc = cnn.W_fc.eval() l2_norm = np.linalg.norm(W_fc) # print(">>>>>>> NEW L2 NORM IS:" + str(l2_norm)) def validation_step(x_batch, y_batch, writer=None): feed_dict = {cnn.x: x_batch, cnn.y: y_batch, cnn.dropout_keep_prob: 1.0} step, summaries, loss, accuracy = sess.run([global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict=feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) # Generate batches batches = preprocessing.batch_iter(list(zip(x_train, y_train)), tf.flags.FLAGS.batch_size, tf.flags.FLAGS.n_epochs) # Training loop. For each batch... for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) current_step = tf.train.global_step(sess, global_step) # if current_step % tf.flags.FLAGS.evaluate_every == 0: # print("\nEvaluation on Validation set:") # validation_step(x_valid, y_valid, writer=dev_summary_writer) # print("") # if current_step % tf.flags.FLAGS.checkpoint_every == 0: # path = saver.save(sess, checkpoint_prefix, global_step=current_step) # print("Saved model checkpoint to {}\n".format(path)) print("\nEvaluation on Validation set:") validation_step(x_valid, y_valid, writer=dev_summary_writer)
#testing step def test_step(x_batch, y_batch, writer=None): feed_dict = { cnn.input_x:x_batch, cnn.input_y:y_batch, cnn.dropout_keep_prob:1.0 } step, summaries, loss, accuracy = sess.run([global_step, test_summary_op, cnn.loss, cnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy)) if writer: writer.add_summary(summaries, step) return loss, accuracy batches = preprocessing.batch_iter(list(zip(x_train, y_train)), batch_size, num_epochs) #存储训练集和样本集的loss和accuracy,以供之后的画图 train_loss_all = [] train_accuracy_all = [] test_loss_all = [] test_accuracy_all = [] #进行训练 training loop for every step for batch in batches: x_batch, y_batch = zip(*batch) loss_train, accuracy_train = train_step(x_batch, y_batch) train_loss_all.append(loss_train) train_accuracy_all.append(accuracy_train) current_step = tf.train.global_step(sess, global_step) #将Session和global_step #每evaluateevery次进行一次测试 if current_step % evaluate_every == 0:
def train(): print("Configuring TensorBoard and Saver...") # 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖 if os.path.exists('tensorboard'): shutil.rmtree('tensorboard') tensorboard_dir = 'tensorboard/textcnn' if not os.path.exists(tensorboard_dir): os.makedirs(tensorboard_dir) tf.summary.scalar("loss", model.loss) tf.summary.scalar("accuracy", model.acc) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(tensorboard_dir) # 配置 Saver saver = tf.train.Saver() if not os.path.exists(save_dir): os.makedirs(save_dir) print("Loading training and validation data...") # 载入训练集与验证集 start_time = time.time() x_train, y_train = process_file(train_dir, word_to_id, cat_to_id, config.seq_length) x_val, y_val = process_file(val_dir, word_to_id, cat_to_id, config.seq_length) time_dif = get_time_dif(start_time) print("Time usage:", time_dif) # 创建session session = tf.Session() session.run(tf.global_variables_initializer()) writer.add_graph(session.graph) print('Training and evaluating...') start_time = time.time() total_batch = 0 # 总批次 best_acc_val = 0.0 # 最佳验证集准确率 last_improved = 0 # 记录上一次提升批次 require_improvement = 1000 # 如果超过1000轮未提升,提前结束训练 flag = False for epoch in range(config.num_epochs): print('Epoch:', epoch + 1) batch_train = batch_iter(x_train, y_train, config.batch_size) for x_batch, y_batch in batch_train: feed_dict = feed_data(x_batch, y_batch, config.dropout_keep_prob) if total_batch % config.save_per_batch == 0: # 每多少轮次将训练结果写入tensorboard scalar s = session.run(merged_summary, feed_dict=feed_dict) writer.add_summary(s, total_batch) if total_batch % config.print_per_batch == 0: # 每多少轮次输出在训练集和验证集上的性能 feed_dict[model.keep_prob] = 1.0 loss_train, acc_train = session.run([model.loss, model.acc], feed_dict=feed_dict) loss_val, acc_val = evaluate(session, x_val, y_val) # todo if acc_val > best_acc_val: # 保存最好结果 best_acc_val = acc_val last_improved = total_batch saver.save(sess=session, save_path=save_path) improved_str = '*' else: improved_str = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss:{1:>6.2}, Train Acc:{2:>7.2%},' \ + ' Val Loss:{3:>6.2}, Val Acc:{4:>7.2%}, Time:{5} {6}' print( msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improved_str)) feed_dict[model.keep_prob] = config.dropout_keep_prob session.run(model.optim, feed_dict=feed_dict) # 运行优化 total_batch += 1 if total_batch - last_improved > require_improvement: # 验证集正确率长期不提升,提前结束训练 print("No optimization for a long time, auto-stopping...") flag = True break # 跳出循环 if flag: # 同上 break
##### TRAIN / TEST SPLIT ##### # Randomly shuffle data np.random.seed(10) # Train/test split for score shuffled_indices = np.random.permutation(len(scored_data[:,0])) dev_sample_index = int(FLAGS.dev_sample_percentage * float(len(shuffled_indices))) test_indices = shuffled_indices[:dev_sample_index] train_indices = shuffled_indices[dev_sample_index:] train_score = scored_data[train_indices,:] test_scored = scored_data[test_indices,:] # Needed for dev step - but actually we only evaluated on the first 64 (not the full 96 test set) for tensorboard. test_score_imgs = np.reshape(np.concatenate(test_scored[:, 0]), (-1,1000,1000)) test_score = np.reshape(test_scored[:, 1], (-1)) # Generate training batches for scored images batches_scored = preprocessing.batch_iter(train_score, FLAGS.batch_size, FLAGS.num_epochs) # Train/test split for labels shuffled_indices = np.random.permutation(len(labeled_data[:,0])) dev_sample_index = int(FLAGS.dev_sample_percentage * float(len(shuffled_indices))) test_indices = shuffled_indices[:dev_sample_index] train_indices = shuffled_indices[dev_sample_index:] train_label = labeled_data[train_indices,:] test_labeled = labeled_data[test_indices,:] # Generate training batches for labeled images batches_labeled = preprocessing.batch_iter(train_label, FLAGS.batch_size, FLAGS.num_epochs) ##### PRINTING THE USED PARAMETERS TO THE LOG FILE ##### print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()):