Пример #1
0
def main():
    print("Loading...")
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)
    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=42)
    print("Vectorizing")
    vectorizer = CountVectorizer(tokenizer=tokenize)
    x_train = vectorizer.fit_transform(x_train)
    x_test = vectorizer.transform(x_test)
    print(x_train.shape)
    print(x_test.shape)

    print("Selecting features...")
    selector = SelectKBest(k=7000, score_func=mutual_info_classif)
    selector.fit(x_train, y_train)
    x_train_new = selector.transform(x_train)
    x_test_new = selector.transform(x_test)
    print(x_train_new.shape)
    print(x_test_new.shape)

    print("Evaluating...")
    clf = LogisticRegression(solver="liblinear")
    clf.fit(x_train_new, y_train)
    y_pred = clf.predict(x_test_new)
    score = accuracy_score(y_test, y_pred)
    print("{:4f}".format(score))
Пример #2
0
def main():
    logger = logging.getLogger("__name__")

    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv", n=5000)

    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=44)

    vectorizer = TfidfVectorizer(tokenizer=tokenize)
    x_train_vec = vectorizer.fit_transform(x_train)
    x_test_vec  = vectorizer.transform(x_test)

    @stop_watch
    def k_fold_cv(clf, x_train, y_train, k_cv=5) -> None:
        logger = logging.getLogger("kfoldcvLigging")
        scores = cross_val_score(clf, x_train, y_train, cv=k_cv)
        logger.debug(f"CV scores (k={k_cv}): {scores}")
        logger.debug("Accuracy: {:.4f} (+/- {:.4f})".format(scores.mean(), scores.std()*2))
        return None

    clf = LogisticRegression(solver="liblinear")
    for k in [3,4,5]:
        k_fold_cv(clf=clf, x_train=x_train_vec, y_train=y_train, k_cv=k)

    clf.fit(x_train_vec, y_train)
    y_pred = clf.predict(x_test_vec)
    score = accuracy_score(y_pred, y_test)
    logger.debug("Accuracy score (test): {:.4f}".format(score))
Пример #3
0
def main():
    x, y = load_dataset('data/amazon_reviews_multilingual_JP_v1_00.tsv',
                        n=5000)

    print('Tokenization')
    x = [clean_html(text, strip=True) for text in x]
    x = [' '.join(tokenize(text)) for text in x]
    x_train, x_test, y_train.y_test = train_test_split(x,
                                                       y,
                                                       test_size=0.2,
                                                       random_state=42)

    print('Binary')
    vectorizer = CountVectorizer(binary=True)
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    print('COunt')
    vectorizer = CountVectorizer(binary=False)
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    print('TF-IDF')
    vectorizer = TfidfVectorizer()
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    print('Bigram')
    vectorizer = TfidfVectorizer(ngram_range=(1, 2))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)
Пример #4
0
def main():
    logger = logging.getLogger('__name__')

    import MeCab
    path_neologd = '/usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd'
    t_mecab = MeCab.Tagger("-Owakati && -d {}".format(path_neologd))

    def tokenize_by_mecab(text):
        return list(t_mecab.parse(text).strip().split(" "))

    use_tokens = [tokenize, tokenize_by_mecab]
    t_names = ["janome", "MeCab"]

    logger.debug("Loading dataset...")
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)
    x = [clean_html(text, strip=True) for text in x]

    for use_token, t_name in zip(use_tokens, t_names):
        logger.debug("●○ {} ○●".format(t_name))
        x_train, x_test, y_train, y_test = train_test_split(x,
                                                            y,
                                                            test_size=0.2,
                                                            random_state=44)

        logger.debug("Count vectorizing...")
        vectorizer = CountVectorizer(tokenizer=use_token)
        x_train = vectorizer.fit_transform(x_train)
        x_test = vectorizer.transform(x_test)
        logger.debug(f"x_train's shape is {x_train.shape}")
        logger.debug(f" x_test's shape is {x_test.shape}")

        logger.debug("Selecting features...")
        selector = SelectKBest(k=7000, score_func=mutual_info_classif)
        # k; number of used features, mutal_info_classif; 相互情報量
        selector.fit(x_train, y_train)
        x_train_new = selector.transform(x_train)
        x_test_new = selector.transform(x_test)
        logger.debug(f"x_train_new's shape is {x_train_new.shape}")
        logger.debug(f" x_test_new's shape is {x_test_new.shape}")

        logger.debug("Evaluating...")
        clf = LogisticRegression(solver="liblinear")
        clf.fit(x_train_new, y_train)
        y_pred = clf.predict(x_test_new)
        score = accuracy_score(y_test, y_pred)
        logger.debug("{:.4f}".format(score))
def main():
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)

    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=42)
    vectorizer = TfidfVectorizer(tokenizer=tokenize)
    x_train_vec = vectorizer.fit_transform(x_train)
    x_test_vec = vectorizer.transform(x_test)

    title = "Learning Curves"
    cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    clf = LogisticRegression(solver="liblinear")
    plot_learning_curve(clf, title, x_train_vec, y_train, cv=cv)
def main():
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv", n=5000)

    print("Tokenization")
    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x, y,
                                                        test_size=0.2,
                                                        random_state=42)
    vectorizer = TfidfVectorizer(tokenizer=tokenize)
    x_train_vec = vectorizer.fit_transform(x_train)
    x_test_vec = vectorizer.transform(x_test)

    clf = LogisticRegression(solver="liblinear")
    clf.fit(x_train_vec, y_train)

    y_pred = clf.predict(x_test_vec)
    score = accuracy_score(y_test, y_pred)
    print("{:.4f}".format(score))
def main():
    x, y = load_dataset('data/amazon_reviews_multilingual_JP_v1_00.tsv', n=5000)
    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train. y_test = train_test_split(x, y,
                                                        test_size=0.2,
                                                        random_state=42)
    
    vectorizer = TfidfVectorizer(tokenizer=tokenize)
    x_train_vec = vectorizer.fit_transform(x_train)
    x_test_vec = vectorizer.transform(x_test)

    clf = LogisticRegression(solver='liblinear')
    scores = cross_val_score(clf, x_train_vec, y_train, cv=5)
    print('scores')
    print('Accuracy(test): {:4f} (+/- {:4f})'.format(scores.mean(), scores.std() *2))

    clf.fit(x_train_vec, y_train)
    y_pred = clf.pred(x_test_vec)
    score = accuracy_score(y_test, y_pred)
    print('Accuracy(test): {:4f}'.format(score))
Пример #8
0
def main():
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv", n=5000)

    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x, y,
                                                        test_size=0.2,
                                                        random_state=42)
    vectorizer = TfidfVectorizer(tokenizer=tokenize)
    x_train_vec = vectorizer.fit_transform(x_train)
    x_test_vec = vectorizer.transform(x_test)

    parameters = {"penalty": ["l1", "l2"],
                  "C": [0.01, 0.03, 0.1, 0.3, 0.7, 1, 1.01, 1.03, 1.07, 1.1, 1.3, 1.7, 3]}
    lr = LogisticRegression(solver="liblinear")
    clf = GridSearchCV(lr, parameters, cv=5, n_jobs=-1)
    clf.fit(x_train_vec, y_train)

    best_clf = clf.best_estimator_
    print("clf.best_params")
    print("Accuracy(best): {:.4f}".format(clf.best_score_))
    y_pred = best_clf.predict(x_test_vec)
    score = accuracy_score(y_test, y_pred)
    print("Accuracy(test): {:.4f}".format(score))
Пример #9
0
def main():
    logger = logging.getLogger("__name__")

    # load dataset
    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)

    # feature engineering
    x = [clean_html(text, strip=True) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=44)

    # vectorization
    vectorizer = CountVectorizer(tokenizer=tokenize)
    x_train = vectorizer.fit_transform(x_train)
    x_test = vectorizer.transform(x_test)
    x_train = x_train.toarray()
    x_test = x_test.toarray()

    # setting hyperparameters
    vocab_size = len(vectorizer.vocabulary_)
    label_size = len(set(y_train))

    # build model
    model = create_model(vocab_size, label_size)
    model.compile(loss="sparse_categorical_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])

    # declare callbacks
    filepath = "./log/model.h5"

    cb_early = EarlyStopping(
        monitor=
        "val_loss",  # monitored parameter, default: val_loss (validation loss)
        min_delta=0,  # default: 0
        patience=3,  # epochs for stopping, default: 0
        verbose=0,  # default: 0
        mode="auto",  # default: auto
        baseline=None,  # default: None
        restore_best_weights=False  # default: False
    )

    cb_modelcp = ModelCheckpoint(
        filepath=
        filepath,  # path for save model, default: nothing; NECCESARY ARGUMENT
        monitor=
        "val_loss",  # monitored parameter, default: val_loss (validation loss)
        verbose=0,  # default: 0
        save_best_only=
        True,  # if True, save best model only (save HDD usage), default: False
        save_weights_only=
        False,  # if True, save weights parameter only (not include model architecture), default: False
        mode="auto",  # default: False
        period=1  # default: False
    )

    # when use Tensorboard, run commands on terminal as shown below;
    #   ``` tensorboard --logdir=./logs (this is default) --bind_all ```
    # after training model, u can access to http://localhost:6006 and use tensorboard.
    # if u wanna exit tensorboard, press Ctrl+C on terminal.
    cb_tensorb = TensorBoard(
        log_dir=
        "./log",  # path for save params plotting on tensorboard, delfault: ./logs
        histogram_freq=0,  # default: 0
        batch_size=32,  # default: 32
        write_graph=True,  # default: True
        write_grads=False,  # default: False
        write_images=False,  # default: False
        embeddings_freq=0,  # default: 0
        embeddings_layer_names=None,  # default: None
        embeddings_metadata=None,  # default: None
        embeddings_data=None,  # default: None
        update_freq="epoch"  # default: epoch
    )
    """callbacks = [
        cb_early,
        cb_modelcp,
        cb_tensorb
    ]"""

    callbacks = [
        EarlyStopping(
            patience=3,  # epochs for stopping, default: 0
        ),
        ModelCheckpoint(
            filepath=
            filepath,  # path for save model, default: nothing; NECCESARY ARGUMENT
            save_best_only=
            True,  # if True, save best model only (save HDD usage), default: False
        ),
        TensorBoard(
            log_dir=
            "./log",  # path for save params plotting on tensorboard, delfault: ./logs
        )
    ]

    # training model
    #@stop_watch
    def train_model(x_train, y_train):
        return model.fit(x_train,
                         y_train,
                         validation_split=0.2,
                         epochs=100,
                         batch_size=32,
                         callbacks=callbacks)

    history = train_model(x_train, y_train)

    # load saved model
    model = load_model(filepath)

    # describe model
    # if fail to run this, try command on terminal;
    #    pip install pydot==1.2.3 pydot_ng && apt-get install graphviz
    plot_model(model, to_file="./log/model.png")

    # predict by model
    text = "このアプリ超最高!"
    vec = vectorizer.transform([text])
    y_pred = model.predict(vec.toarray())
    logger.debug(f"""input text is "{text}".""")
    logger.debug("predict: ", y_pred)

    # plot acc and loss graphs
    plot_history(history)
Пример #10
0
def main():
    logger = logging.getLogger('__name__')

    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)

    logger.debug("●○ Tokenization ○●")
    x = [clean_html(text, strip=True) for text in x]
    x = [" ".join(tokenize(text)) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=44)

    logger.debug("●○ Binary ○●")
    vectorizer = CountVectorizer(binary=True)
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ Count ○●")
    vectorizer = CountVectorizer(binary=False)
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ TF-IDF; Uni-gram ○●")
    vectorizer = TfidfVectorizer(ngram_range=(1, 1))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ TF-IDF; Bi-gram ○●")
    vectorizer = TfidfVectorizer(ngram_range=(2, 2))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ TF-IDF; Uni- and Bi-grams ○●")
    vectorizer = TfidfVectorizer(ngram_range=(1, 2))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ TF-IDF; Uni-, Bi-, and Tri-grams ○●")
    vectorizer = TfidfVectorizer(ngram_range=(1, 3))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ Use MaCab; TF-IDF; Uni-gram ○●")  # not written in text

    import MeCab
    path_neologd = '/usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd'
    t_mecab = MeCab.Tagger("-Owakati && -d {}".format(path_neologd))

    def tokenize_by_mecab(text):
        return list(t_mecab.parse(text).strip().split(" "))

    x, y = load_dataset("data/amazon_reviews_multilingual_JP_v1_00.tsv",
                        n=5000)
    x = [clean_html(text, strip=True) for text in x]
    x = [" ".join(tokenize_by_mecab(text)) for text in x]
    x_train, x_test, y_train, y_test = train_test_split(x,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=44)
    vectorizer = TfidfVectorizer(ngram_range=(1, 1))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug(
        "●○ Use MaCab; TF-IDF; Uni- and Bi-grams ○●")  # not written in text
    vectorizer = TfidfVectorizer(ngram_range=(1, 2))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)

    logger.debug("●○ Use MaCab; TF-IDF; Uni-, Bi-, and Tri-grams ○●"
                 )  # not written in text
    vectorizer = TfidfVectorizer(ngram_range=(1, 3))
    train_and_eval(x_train, y_train, x_test, y_test, vectorizer)