def process(self): data_list = [] indices_val = list(range(225011, 249456)) dp.get_dataset("ZINC_val", regression=True) node_labels = pre.get_all_node_labels("ZINC_full", True, True) targets = pre.read_targets("ZINC_val", list(range(0, 24445))) node_labels_1 = node_labels[225011:249456] matrices = pre.get_all_matrices_wl("ZINC_val", list(range(0, 24445))) targets_1 = targets for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 data.x = torch.from_numpy(np.array(node_labels_1[i])).to( torch.float) data.y = data.y = torch.from_numpy(np.array([targets_1[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] dp.get_dataset("ZINC_test", regression=True) # TODO Change this node_labels = pre.get_all_node_labels("ZINC_full", True, True) targets = pre.read_targets("ZINC_test", list(range(0, 5000))) node_labels_1 = node_labels[220011:225011] matrices = pre.get_all_matrices_wl("ZINC_test", list(range(0, 5000))) targets_1 = targets for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 # one_hot = np.eye(492)[node_labels[i]] data.x = torch.from_numpy(np.array(node_labels_1[i])).to( torch.float) data.y = data.y = torch.from_numpy(np.array([targets_1[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] targets = dp.get_dataset("alchemy_full", multigregression=True).tolist() node_labels = pre.get_all_node_labels("alchemy_full", True, True) matrices = pre.get_all_matrices("alchemy_full", list(range(202579))) for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(83)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) data.y = data.y = torch.from_numpy(np.array([targets[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] targets = dp.get_dataset("QM9", multigregression=True).tolist() attributes = pre.get_all_attributes("QM9") node_labels = pre.get_all_node_labels("QM9", False, False) matrices = pre.get_all_matrices("QM9", list(range(129433))) for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(3)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) # Continuous information. data.first = torch.from_numpy(np.array( attributes[i][0])[:, 0:13]).to(torch.float) data.first_coord = torch.from_numpy( np.array(attributes[i][0])[:, 13:]).to(torch.float) data.second = torch.from_numpy( np.array(attributes[i][1])[:, 0:13]).to(torch.float) data.second_coord = torch.from_numpy( np.array(attributes[i][1])[:, 13:]).to(torch.float) data.dist = torch.norm(data.first_coord - data.second_coord, p=2, dim=-1).view(-1, 1) data.edge_attr = torch.from_numpy(np.array(attributes[i][2])).to( torch.float) data.y = torch.from_numpy(np.array([targets[i]])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])