Пример #1
0
            refDir = valR[i].replace("R_no_atoms", "A_no_atoms")
            Y = np.array(np.array(
                io.imread(
                    valR[i])[int(inL / 2 - outL / 2):int(inL / 2 + outL / 2),
                             int(inL / 2 - outL / 2):int(inL / 2 + outL / 2)]),
                         dtype=np.dtype('float32')) / 4294967295
            ref = np.array(np.array(
                io.imread(refDir)[int(inL / 2 - outL / 2):int(inL / 2 +
                                                              outL / 2),
                                  int(inL / 2 - outL / 2):int(inL / 2 +
                                                              outL / 2)]),
                           dtype=np.dtype('float32')) / 4294967295
            valRloss[i] = np.average((ref - Y)**2)
        np.save('referenceMSEvalR.npy', valRloss)

    referenceMSE = np.mean(
        np.concatenate((trainAloss, trainRloss, valAloss, valRloss)))
    print('reference MSE is ' + str(referenceMSE))

    return referenceMSE


if __name__ == '__main__':
    from unet import unet_model
    model = unet_model(476, 192)
    model = initialize_model(model)

    from preprocessing import prepare_datasets
    trainList, valList, testList = prepare_datasets(476, 442, 804, 0.2)
    referenceMSE = generate_referance_loss(476, 192, trainList, valList)
Пример #2
0
        valR = [s for s in valList if "R_no_atoms" in s]
        valRloss = np.empty(len(valR))
        for i in tqdm(range(len(valR))):
            refDir = valR[i].replace("R_no_atoms", "A_no_atoms")
            Y = np.array(np.array(io.imread(valR[i])[int(inL / 2 - outL / 2):int(inL / 2 + outL / 2),
                                  int(inL / 2 - outL / 2):int(inL / 2 + outL / 2)]),
                         dtype=np.dtype('float32')) / 4294967295
            ref = np.array(np.array(io.imread(refDir)[int(inL / 2 - outL / 2):int(inL / 2 + outL / 2),
                                    int(inL / 2 - outL / 2):int(inL / 2 + outL / 2)]),
                           dtype=np.dtype('float32')) / 4294967295
            valRloss[i] = np.average((ref - Y) ** 2)
        np.save('referenceMSEvalR.npy', valRloss)

    referenceMSE = np.mean(np.concatenate((trainAloss, trainRloss, valAloss, valRloss)))
    print('reference MSE is ' + str(referenceMSE))

    return referenceMSE


if __name__ == '__main__':
    from unet import unet_model

    model = unet_model(476, 192)
    model = initialize_model(model)

    from preprocessing import prepare_datasets

    # trainList, valList, testList = prepare_datasets(476, 442, 804, 0.2)
    trainList, valList, testList = prepare_datasets(804, 0.2)
    referenceMSE = generate_reference_loss(476, 192, trainList, valList)
Пример #3
0
        'use this flag if you don\'t have the same dataset structure as the original: '
        'A_no_atoms, R_no_atoms, A_with_atoms, R_with_atoms')

    return parser


if __name__ == '__main__':
    ## params
    parser = get_parser()
    args = parser.parse_args()

    outL = 2 * args.maskR  # Output size
    mask = generate_mask(args.inL, args.maskR)

    ## get data
    trainList, valList, testList = prepare_datasets(args.inL, args.centerVer,
                                                    args.centerHor, 0.2)

    ## build model
    K.clear_session()
    model = unet_model(args.inL, outL)
    model.summary()  # display model summary
    model, epochNum, trainLoss, valLoss = initialize_model(model)
    if args.SGD:
        opt = SGD(lr=1e-2, momentum=0.9, decay=1e-4 / args.max_epochs)
    else:
        opt = Adam(lr=args.learning_rate)
    #model.compile(optimizer=opt, loss='mse')

    model.compile(optimizer=opt, loss='mse')

    ## calculate referance loss
Пример #4
0
        'use this flag if you don\'t have the same dataset structure as the original: '
        'A_no_atoms, R_no_atoms, A_with_atoms, R_with_atoms')

    return parser


if __name__ == '__main__':
    ## params
    parser = get_parser()
    args = parser.parse_args()

    outL = 2 * args.maskR  # Output size
    mask = generate_mask(args.inL, args.maskR)

    ## get data
    trainList, valList, testList = prepare_datasets(args, 0.2)

    ## build model
    K.clear_session()
    model = unet_model(args.inL, outL)
    model.summary()  # display model summary
    model, epochNum, trainLoss, valLoss = initialize_model(model)
    if args.SGD:
        opt = SGD(lr=1e-2, momentum=0.9, decay=1e-4 / args.max_epochs)
    else:
        opt = Adam(lr=args.learning_rate)
    model.compile(optimizer=opt, loss='mse')
    model.compile(optimizer=opt, loss='mse')

    ## calculate referance loss
    if not args.skip_reference_comparison: