def preprocess(self, data, size): data = data.drop([3], axis=1) rows, columns = data.shape data[0] = np.ones(rows) power = [i + 1 for i in range(columns - 1)] #1 to number of columns val = 0 for i in range(2, size + 1): # 2 to size -- i new_col = list(combinations_with_replacement(power, i)) for j in range(len(new_col)): data[columns + val] = 1 for k in new_col[j]: data[columns + val] = data[columns + val] * data[k] val += 1 print("Data is of form in Data frame without Normalization: ") print(data.head(5)) # n1 = MinMaxScaler() # normalizing data here n1 = NormalScaler() # n1.fit(data) # data = n1.transform(data) for i in data.columns: n1.fit(data[i]) data[i] = n1.transform(data[i]) data[0] = 1 print("Data is of form in Data frame after Normalization: ") print(data.head(5)) data = data.to_numpy() print(data.shape) return data
def preprocess(self, data, degree): data = data.drop([3], axis=1) rows, columns = data.shape data[0] = np.ones(rows) power = [i + 1 for i in range(columns - 1)] val = 0 for i in range(2, degree + 1): # i range from 2 to degree new_col = list(combinations_with_replacement(power, i)) for j in range(len(new_col)): data[columns + val] = 1 for k in new_col[j]: data[columns + val] = data[columns + val] * data[k] val += 1 # print("Data is of form in Data frame without Normalization: ") # print(data.head(2)) # n1 = MinMaxScaler() n1 = NormalScaler() n1.fit(data) data = n1.transform(data) data[0] = 1 # print("Data is of form in Data frame after Normalization: ") # print(data.head(2)) data = data.to_numpy() print("Shape of Data is :") print(data.shape) return data
def preprocess(self, data, size): data = data.drop([3], axis=1) rows, columns = data.shape data[0] = np.ones(rows) power = [i + 1 for i in range(columns - 1)] #1 to number of columns val = 0 for i in range(2, size + 1): # 2 to size -- i new_col = list(combinations_with_replacement(power, i)) for j in range(len(new_col)): data[columns + val] = 1 for k in new_col[j]: data[columns + val] = data[columns + val] * data[k] val += 1 n1 = NormalScaler() for i in data.columns: n1.fit(data[i]) data[i] = n1.transform(data[i]) data[0] = 1 data = data.to_numpy() return data
returns the predicted target values. """ X = self.add_bias(X) return np.matmul(X, self.W) if __name__ == "__main__": model = LinearRegression_Vectorized() # data input data = pd.read_csv("./3D_spatial_network.csv", header=None)[::] X = data.loc[:, 0:1].values y = data.loc[:, 2].values # data preprocessing (Normal Scaling) mscaler = NormalScaler() mscaler.fit(X[:, 0]) X[:, 0] = mscaler.transform(X[:, 0]) mscaler.fit(X[:, 1]) X[:, 1] = mscaler.transform(X[:, 1]) # training the model arr = model.train(X, y) print("weights: ", model.W) print("Total Cost: ", model.cost) # visualization of cost function. res = 100 bounds = 10 xx = np.linspace(model.W[1] - bounds, model.W[1] + bounds, res) yy = np.linspace(model.W[2] - bounds, model.W[2] + bounds, res)
import pandas as pd from scipy.io import loadmat from elm import ELM from MLP_auto import MLP if __name__ == '__main__': data = pd.DataFrame(loadmat('./data5.mat')['x']) data = data.sample(frac=1).reset_index(drop=True) X = data.loc[:, :71].values y = data.loc[:, 72:73].values y_cat = np.zeros((y.shape[0], 2)) for i in range(y.shape[0]): y_cat[i][int(y[i])] = 1 # data preprocessing scaler = NormalScaler() for j in range(X.shape[1]): scaler.fit(X[:, j]) X[:, j] = scaler.transform(X[:, j]) # m = number of feature vectors m = X.shape[0] # n = number of features n = X.shape[1] train_percent = 0.6 X_train = X[:int(train_percent * X.shape[0]), :] y_train = y_cat[:int(train_percent * X.shape[0]), :] X_test = X[int(train_percent * X.shape[0]):, :] y_test = y_cat[int(train_percent * X.shape[0]):, :]
import pandas as pd import numpy as np from preprocessing import NormalScaler import matplotlib.pyplot as plt import keras # loading data data = loadmat('./data_for_cnn.mat')['ecg_in_window'].astype(np.float64) data_labels = loadmat('./class_label.mat')['label'].astype(np.int) data = np.concatenate((data, data_labels), axis=1) np.random.shuffle(data) # data preprocessing scaler = NormalScaler() for j in range(data.shape[1] - 1): scaler.fit(data[:, j]) data[:, j] = scaler.transform(data[:, j]) # splitting data into train and test sets split_percent = 0.8 X_train = data[:int(data.shape[0] * split_percent), :1000].astype(np.float) y_train = data[:int(data.shape[0] * split_percent), 1000:1001] X_test = data[int(data.shape[0] * split_percent):, :1000].astype(np.float) y_test = data[int(data.shape[0] * split_percent):, 1000:1001] X_train = X_train.reshape(X_train.shape[0], 1000, 1) X_test = X_test.reshape(X_test.shape[0], 1000, 1)
if __name__ == "__main__": # data input data = pd.read_excel("./data4.xlsx", header=None) data = data.sample(frac=1).reset_index(drop=True) data = data.values X = data[:, :7] y = data[:, 7] unique_classes = np.unique(y) num_classes = len(unique_classes) # data preprocessing mscaler = NormalScaler() for j in range(X.shape[1]): mscaler.fit(X[j]) X[j] = mscaler.transform(X[j]) y_cat = (y == unique_classes[0]).astype('int').reshape(-1, 1) for i in unique_classes[1:]: y_cat = np.concatenate((y_cat, (y == i).astype('int').reshape(-1, 1)), axis=1) # splitting data using holdout cross validation train_percent = 0.7 X_train = X[:int(train_percent * X.shape[0])] y_train = y[:int(train_percent * X.shape[0])] y_cat_train = y_cat[:int(train_percent * X.shape[0])] X_test = X[int(train_percent * X.shape[0]):]
y_pred[i] += X[i][j] * W[j][0] y_pred[i] = self.sigmoid(y_pred[i]) return y_pred if __name__ == "__main__": model = LogisticRegression() # data input data = pd.read_excel("./data3.xlsx", header=None) data = data.sample(frac=1).reset_index(drop=True) X = data[[0, 1, 2, 3]] y = data[4] - 1 # data preprocessing (Normal scaling) mscaler = NormalScaler() for j in range(X.shape[1]): mscaler.fit(X.loc[:, j]) X.loc[:, j] = mscaler.transform(X.loc[:, j]) # holdout cross validation split train_percent = 0.6 X_train = X[:int(train_percent * X.shape[0])] y_train = y[:int(train_percent * X.shape[0])] X_test = X[int(train_percent * X.shape[0]):] y_test = y[int(train_percent * X.shape[0]):] # Training the model by choosing alpha and max_iter values. # gradient descent algorithm can be set as either ‘batch’ or ‘stochastic’ # in this function call. alpha = 0.26