Пример #1
0
def p12():
    """ Highly divisible triangular number
    The sequence of triangle numbers is generated by adding the natural numbers.
    So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
    Let us list the factors of the first seven triangle numbers:
     1: 1
     3: 1,3
     6: 1,2,3,6
    10: 1,2,5,10
    15: 1,3,5,15
    21: 1,3,7,21
    28: 1,2,4,7,14,28
    We can see that 28 is the first triangle number to have over five divisors.
    What is the value of the first triangle number to have over five hundred divisors?
    """
    import sys
    sys.path.append("../idea bag/")
    from prime_factors import factors

    index = 1
    triangular = 1
    divisors = 0
    while divisors < 500:
        index += 1
        triangular += index
        divisors = len(factors(triangular)) + 2

    return triangular
Пример #2
0
 def test_no_factors(self):
     self.assertEqual(factors(1), [])
Пример #3
0
 def test_factors_include_a_large_prime(self):
     self.assertEqual(factors(93819012551), [11, 9539, 894119])
Пример #4
0
 def test_product_of_primes(self):
     self.assertEqual(factors(901255), [5, 17, 23, 461])
Пример #5
0
 def test_product_of_primes_and_non_primes(self):
     self.assertEqual(factors(12), [2, 2, 3])
Пример #6
0
 def test_cube_of_a_prime(self):
     self.assertEqual(factors(8), [2, 2, 2])
Пример #7
0
 def test_square_of_a_prime(self):
     self.assertEqual(factors(9), [3, 3])
Пример #8
0
 def test_prime_number(self):
     self.assertEqual(factors(2), [2])
Пример #9
0
 def test_power_of_two(self):
     self.assertEqual(factors(1073741824), [2] * 30)
Пример #10
0
 def test_cube_of_a_prime(self):
     self.assertEqual(factors(617**3), [617, 617, 617])
Пример #11
0
 def test_cube_of_a_non_prime(self):
     self.assertEqual(factors(27**3), [3, 3, 3, 3, 3, 3, 3, 3, 3])
Пример #12
0
 def test_square_of_a_prime_2(self):
     self.assertEqual(factors(625), [5, 5, 5, 5])
Пример #13
0
 def test_prime_number_3(self):
     self.assertEqual(factors(9539), [9539])
Пример #14
0
 def test_prime_number_2(self):
     self.assertEqual(factors(17), [17])
Пример #15
0
 def test_factors_include_a_very_large_prime(self):
     self.assertEqual(factors(2 ** 1000), [2] * 1000)
Пример #16
0
 def is_abundant(number):
     return number <= sum(factors(number))