def create_and_run_model(args): """ Method to run the model. :param args: Arguments object. """ graph = graph_reader(args.input) model = LabelPropagator(graph, args) model.do_a_series_of_propagations()
def create_and_run_model(args): """ Method to run the model. :param args: Arguments object. """ graph = graph_reader(args.input) result = content_reader(args.content) kshell=value_kshell(args.kshell) model = LabelPropagator(graph,args) model.do_a_series_of_propagations()
def create_and_run_model(args): """ Function to read the graph, create an embedding and train it. """ graph = graph_reader(args.input) if args.model == "GEMSECWithRegularization": model = GEMSECWithRegularization(args, graph) elif args.model == "GEMSEC": model = GEMSEC(args, graph) elif args.model == "DeepWalkWithRegularization": model = DeepWalkWithRegularization(args, graph) else: model = DeepWalk(args, graph) model.train()
def create_and_run_model(args): """ Function to read the graph, create an embedding and train it. """ graph = graph_reader(args.input) if args.model == "GRAFCODEWithRegularization": model = GRAFCODEWithRegularization(args, graph) elif args.model == "GRAFCODE": model = GRAFCODE(args, graph) elif args.model == "GRAFWithRegularization": model = GRAFWithRegularization(args, graph) else: model = GRAF(args, graph) model.train()
def create_and_run_model(args): graph = graph_reader(args.input) model = LabelPropagator(graph, args) model.do_a_series_of_propagations()