def __init__(self, apar, cpar, session, asr):
        Privacy.__init__(self, apar, cpar, session, asr)

        self.animationTag = self.HIDE_FLOOR_TURN_TAG
        self.angle = self.ANGLE_LOOK_DOWN

        # Parse the action parameters
        self.apar = self.apar.split(' ')

        # Parse the cultural parameters
        self.cpar = self.cpar.split(' ')

        self.volume = float(self.cpar[0])
        self.speed = float(self.cpar[1])
        self.pitch = float(self.cpar[2])
        self.language = self.cpar[3].lower().replace('"', '')
        self.username = self.cpar[4].replace('"', '')

        caressestools.Language.setLanguage(self.language)
        self.setLang(self.language)

        caressestools.setRobotLanguage(self.session,
                                       caressestools.Language.lang_naoqi)
        caressestools.setVoiceVolume(self.session, self.volume)
        caressestools.setVoiceSpeed(self.session, self.speed)
        caressestools.setVoicePitch(self.session, self.pitch)
Пример #2
0
    def test_membership_inference_torfi_mismatch(self):

        n = 10000
        m = 17
        missing_value = -999999
        pri = Privacy()

        header = []
        for i in range(m):
            header = np.append(header, 'col' + str(i))

        # create dummy dataset for high risk of membership disclosure
        r_trn = np.random.normal(loc=0, size=(n, m))
        r_tst = np.random.normal(loc=0, size=(n, m))
        s = np.random.normal(loc=10, size=(n, m))

        res_mi = pri.membership_inference(mat_f_r_trn=r_trn,
                                          mat_f_r_tst=r_tst,
                                          mat_f_s=s,
                                          header=header,
                                          missing_value=missing_value,
                                          mi_type='torfi',
                                          n_cpu=1)

        avg_p_trn = np.mean(res_mi['prob'][np.where(res_mi['label'] == 1)])
        avg_p_tst = np.mean(res_mi['prob'][np.where(res_mi['label'] == 0)])

        assert np.allclose(avg_p_trn, avg_p_tst, atol=0.05)
Пример #3
0
    def test_distance_euclidean(self):

        pri = Privacy()

        metric = 'euclidean'
        a = np.array([[1, 1]])
        b = np.array([[2, 1]])
        d = pri.distance(arr1=a, arr2=b, metric=metric)

        assert d == 1
Пример #4
0
    def test_nearest_neighbor(self):

        threshold = 1e-5
        metric = "euclidean"
        x = np.array([[1, 1], [4, 4], [5, 4]])
        pri = Privacy()

        nn_dist = pri.nearest_neighbors(arr1=x, metric=metric)
        assert abs(nn_dist[0] -
                   pri.distance(x[0, :], x[1, :], metric)) < threshold
Пример #5
0
    def test_distance_hamming(self):

        pri = Privacy()

        metric = 'hamming'
        a = np.array([[1, 1]])
        b = np.array([[1, 1]])
        d = pri.distance(arr1=a, arr2=b, metric=metric)

        assert d == 0
Пример #6
0
    def test_assess_memorization(self):

        n = 1000
        m = 3
        missing_value = -999999
        pri = Privacy()

        header = []
        for i in range(m):
            header = np.append(header, 'col' + str(i))

        x_real = np.random.random(size=(n, m))
        x_synth = np.random.random(size=(n, m))
        res = pri.assess_memorization(mat_f_r=x_real,
                                      mat_f_s=x_synth,
                                      missing_value=missing_value,
                                      header=header,
                                      metric='euclidean',
                                      debug=False)

        assert np.mean(res['real']) < np.mean(res['rand'])
Пример #7
0
        rea.save_obj(res, file_name=outfile)

        outfile = args.outprefix_realism + '_' + args.analysis_realism + '.pdf'
        rea.plot(res, file_pdf=outfile)

        msg = rea.summarize(res)
        print(msg)

    else:
        print('Error: do not recognize output_realism option ' +
              args.output_realism)
        sys.exit(0)

elif args.task == 'privacy':

    pri = Privacy()
    pre = Preprocessor(missing_value=args.missing_value_privacy)
    r_trn = pre.read_file(args.file_privacy_real_train)
    r_tst = pre.read_file(args.file_privacy_real_test)
    s = pre.read_file(args.file_privacy_synth)

    # subsample
    if args.sample_privacy < len(s['x']):
        idx = np.random.choice(range(len(s['x'])),
                               args.sample_privacy,
                               replace=False)
        s['x'] = s['x'][idx, :]
    if args.sample_privacy < len(r_trn['x']):
        idx = np.random.choice(range(len(r_trn['x'])),
                               args.sample_privacy,
                               replace=False)