def main(): parser = argparse.ArgumentParser( description= "Creates design.json from output of ROI generation tcl script.") parser.add_argument('--design_txt', required=True) parser.add_argument('--design_info_txt', required=True) parser.add_argument('--pad_wires', required=True) args = parser.parse_args() j = {} j['ports'] = [] j['info'] = {} with open(args.design_txt) as f: for d in csv.DictReader(f, delimiter=' '): j['ports'].append(d) with open(args.design_info_txt) as f: for l in f: name, value = l.strip().split(' = ') j['info'][name] = int(value) db = Database(get_db_root()) grid = db.grid() roi = Roi( db=db, x1=j['info']['GRID_X_MIN'], y1=j['info']['GRID_Y_MIN'], x2=j['info']['GRID_X_MAX'], y2=j['info']['GRID_Y_MAX'], ) with open(args.pad_wires) as f: for l in f: parts = l.strip().split(' ') name = parts[0] pin = parts[1] wires = parts[2:] wires_outside_roi = [] for wire in wires: tile = wire.split('/')[0] loc = grid.loc_of_tilename(tile) if not roi.tile_in_roi(loc): wires_outside_roi.append(wire) set_port_wires(j['ports'], name, pin, wires_outside_roi) json.dump(j, sys.stdout, indent=2, sort_keys=True)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--db_root', required=True, help='Project X-Ray Database') parser.add_argument('--connection_database', help='Database of fabric connectivity', required=True) parser.add_argument('--pin_assignments', help='Pin assignments JSON', required=True) parser.add_argument( '--synth_tiles', help= 'If using an ROI, synthetic tile defintion from prjxray-arch-import') args = parser.parse_args() pool = multiprocessing.Pool(20) db = prjxray.db.Database(args.db_root) grid = db.grid() with DatabaseCache(args.connection_database) as conn: with open(args.pin_assignments) as f: pin_assignments = json.load(f) tile_wires = [] for tile_type, wire_map in pin_assignments['pin_directions'].items(): for wire in wire_map.keys(): tile_wires.append((tile_type, wire)) for tile_type, wire in progressbar.progressbar(tile_wires): pins = [ direction_to_enum(pin) for pin in pin_assignments['pin_directions'][tile_type][wire] ] add_graph_nodes_for_pins(conn, tile_type, wire, pins) if args.synth_tiles: use_roi = True with open(args.synth_tiles) as f: synth_tiles = json.load(f) roi = Roi( db=db, x1=synth_tiles['info']['GRID_X_MIN'], y1=synth_tiles['info']['GRID_Y_MIN'], x2=synth_tiles['info']['GRID_X_MAX'], y2=synth_tiles['info']['GRID_Y_MAX'], ) print('{} generating routing graph for ROI.'.format(now())) else: use_roi = False output_only_nodes = set() input_only_nodes = set() find_pip = create_find_pip(conn) find_wire = create_find_wire(conn) find_connector = create_find_connector(conn) print('{} Finding nodes belonging to ROI'.format(now())) if use_roi: for loc in progressbar.progressbar(grid.tile_locations()): gridinfo = grid.gridinfo_at_loc(loc) tile_name = grid.tilename_at_loc(loc) if tile_name in synth_tiles['tiles']: assert len(synth_tiles['tiles'][tile_name]['pins']) == 1 for pin in synth_tiles['tiles'][tile_name]['pins']: _, _, node_pkey = find_wire(tile_name, gridinfo.tile_type, pin['wire']) if pin['port_type'] == 'input': # This track can output be used as a sink. input_only_nodes |= set((node_pkey, )) elif pin['port_type'] == 'output': # This track can output be used as a src. output_only_nodes |= set((node_pkey, )) else: assert False, pin c = conn.cursor() c.execute('SELECT pkey FROM switch WHERE name = ?;', ('routing', )) switch_pkey = c.fetchone()[0] edges = [] edge_set = set() for loc in progressbar.progressbar(grid.tile_locations()): gridinfo = grid.gridinfo_at_loc(loc) tile_name = grid.tilename_at_loc(loc) # Not a synth node, check if in ROI. if use_roi and not roi.tile_in_roi(loc): continue tile_type = db.get_tile_type(gridinfo.tile_type) for pip in tile_type.get_pips(): if pip.is_pseudo: continue if not pip.is_directional: # TODO: Handle bidirectional pips? continue connections = make_connection( conn=conn, input_only_nodes=input_only_nodes, output_only_nodes=output_only_nodes, find_pip=find_pip, find_wire=find_wire, find_connector=find_connector, tile_name=tile_name, loc=loc, tile_type=gridinfo.tile_type, pip=pip, switch_pkey=switch_pkey) if connections: # TODO: Skip duplicate connections, until they have unique # switches for connection in connections: key = tuple(connection[0:3]) if key in edge_set: continue edge_set.add(key) edges.append(connection) print('{} Created {} edges, inserting'.format(now(), len(edges))) c.execute("""BEGIN EXCLUSIVE TRANSACTION;""") for edge in progressbar.progressbar(edges): c.execute( """ INSERT INTO graph_edge( src_graph_node_pkey, dest_graph_node_pkey, switch_pkey, tile_pkey, pip_in_tile_pkey) VALUES (?, ?, ?, ?, ?)""", edge) c.execute("""COMMIT TRANSACTION;""") print('{} Inserted edges'.format(now())) c.execute( """CREATE INDEX src_node_index ON graph_edge(src_graph_node_pkey);""" ) c.execute( """CREATE INDEX dest_node_index ON graph_edge(dest_graph_node_pkey);""" ) c.connection.commit() print('{} Indices created, marking track liveness'.format(now())) mark_track_liveness(conn, pool, input_only_nodes, output_only_nodes) print('{} Flushing database back to file "{}"'.format( now(), args.connection_database))
def main(): parser = argparse.ArgumentParser( description= "Creates design.json from output of ROI generation tcl script.") parser.add_argument('--design_txt', required=True) parser.add_argument('--design_info_txt', required=True) parser.add_argument('--pad_wires', required=True) parser.add_argument('--design_fasm', required=True) args = parser.parse_args() design_json = {} design_json['ports'] = [] design_json['info'] = {} with open(args.design_txt) as f: for d in csv.DictReader(f, delimiter=' '): if d['name'].startswith('dout['): d['type'] = 'out' elif d['name'].startswith('din['): d['type'] = 'in' elif d['name'].startswith('clk'): d['type'] = 'clk' else: assert False, d design_json['ports'].append(d) with open(args.design_info_txt) as f: for l in f: name, value = l.strip().split(' = ') design_json['info'][name] = int(value) db = Database(get_db_root(), get_part()) grid = db.grid() roi = Roi( db=db, x1=design_json['info']['GRID_X_MIN'], y1=design_json['info']['GRID_Y_MIN'], x2=design_json['info']['GRID_X_MAX'], y2=design_json['info']['GRID_Y_MAX'], ) with open(args.pad_wires) as f: for l in f: parts = l.strip().split(' ') name = parts[0] pin = parts[1] wires = parts[2:] wires_outside_roi = [] for wire in wires: tile = wire.split('/')[0] loc = grid.loc_of_tilename(tile) if not roi.tile_in_roi(loc): wires_outside_roi.append(wire) set_port_wires(design_json['ports'], name, pin, wires_outside_roi) frames_in_use = set() for tile in roi.gen_tiles(): gridinfo = grid.gridinfo_at_tilename(tile) for bit in gridinfo.bits.values(): frames_in_use.add(bit.base_address) required_features = [] for fasm_line in fasm.parse_fasm_filename(args.design_fasm): if fasm_line.annotations: for annotation in fasm_line.annotations: if annotation.name != 'unknown_segment': continue unknown_base_address = int(annotation.value, 0) assert False, "Found unknown bit in base address 0x{:08x}".format( unknown_base_address) if not fasm_line.set_feature: continue tile = fasm_line.set_feature.feature.split('.')[0] loc = grid.loc_of_tilename(tile) gridinfo = grid.gridinfo_at_tilename(tile) not_in_roi = not roi.tile_in_roi(loc) if not_in_roi: required_features.append(fasm_line) design_json['required_features'] = sorted( fasm.fasm_tuple_to_string(required_features, canonical=True).split('\n'), key=extract_numbers) design_json['ports'].sort(key=lambda x: extract_numbers(x['name'])) xjson.pprint(sys.stdout, design_json)
def main(): parser = argparse.ArgumentParser(description="Generate synth_tiles.json") parser.add_argument('--db_root', required=True) parser.add_argument('--part', required=True) parser.add_argument('--roi', required=False) parser.add_argument('--overlay', required=False) parser.add_argument('--connection_database', help='Connection database', required=True) parser.add_argument('--synth_tiles', required=True) args = parser.parse_args() db = prjxray.db.Database(args.db_root, args.part) g = db.grid() synth_tiles = {} synth_tiles['tiles'] = {} rois = dict() if args.roi: with open(args.roi) as f: j = json.load(f) synth_tiles['info'] = j['info'] roi = Roi( db=db, x1=j['info']['GRID_X_MIN'], y1=j['info']['GRID_Y_MIN'], x2=j['info']['GRID_X_MAX'], y2=j['info']['GRID_Y_MAX'], ) rois[roi] = j elif args.overlay: with open(args.overlay) as f: j = json.load(f) synth_tiles['info'] = list() for r in j: roi = Roi( db=db, x1=r['info']['GRID_X_MIN'], y1=r['info']['GRID_Y_MIN'], x2=r['info']['GRID_X_MAX'], y2=r['info']['GRID_Y_MAX'], ) rois[roi] = r else: assert False, 'Synth tiles must be for roi or overlay' with DatabaseCache(args.connection_database, read_only=True) as conn: tile_in_use = set() for roi, j in rois.items(): if args.overlay: synth_tiles['info'].append(j['info']) tile_pin_count = dict() num_synth_tiles = 0 for port in sorted(j['ports'], key=lambda i: (i['type'], i['name'])): if port['type'] == 'out': port_type = 'input' if not args.overlay else 'output' is_clock = False elif port['type'] == 'in': is_clock = False port_type = 'output' if not args.overlay else 'input' elif port['type'] == 'clk': port_type = 'output' if not args.overlay else 'input' is_clock = True else: assert False, port if 'wire' not in port: tile, wire = find_wire_from_node(conn, g, roi, port['node'], overlay=bool( args.overlay)) else: tile, wire = port['wire'].split('/') tile_in_use.add(tile) # Make sure connecting wire is not in ROI! loc = g.loc_of_tilename(tile) if bool(args.overlay) ^ roi.tile_in_roi(loc): # Or if in the ROI, make sure it has no sites. gridinfo = g.gridinfo_at_tilename(tile) assert len( db.get_tile_type(gridinfo.tile_type).get_sites() ) == 0, "{}/{}".format(tile, wire) vpr_loc = map_tile_to_vpr_coord(conn, tile) if tile not in synth_tiles['tiles']: tile_name = 'SYN-IOPAD-{}'.format(num_synth_tiles) synth_tiles['tiles'][tile] = { 'pins': [], 'loc': vpr_loc, 'tile_name': tile_name, } num_synth_tiles += 1 tile_pin_count[tile] = 0 synth_tiles['tiles'][tile]['pins'].append({ 'roi_name': port['name'].replace('[', '_').replace(']', '_'), 'wire': wire, 'pad': port['pin'], 'port_type': port_type, 'is_clock': is_clock, 'z_loc': tile_pin_count[tile], }) tile_pin_count[tile] += 1 if not args.overlay: # Find two VBRK's in the corner of the fabric to use as the synthetic VCC/ # GND source. vbrk_loc = None vbrk_tile = None vbrk2_loc = None vbrk2_tile = None for tile in g.tiles(): if tile in tile_in_use: continue loc = g.loc_of_tilename(tile) if not roi.tile_in_roi(loc): continue gridinfo = g.gridinfo_at_tilename(tile) if 'VBRK' not in gridinfo.tile_type: continue assert len(db.get_tile_type( gridinfo.tile_type).get_sites()) == 0, tile if vbrk_loc is None: vbrk2_loc = vbrk_loc vbrk2_tile = vbrk_tile vbrk_loc = loc vbrk_tile = tile else: if (loc.grid_x < vbrk_loc.grid_x and loc.grid_y < vbrk_loc.grid_y) or vbrk2_loc is None: vbrk2_loc = vbrk_loc vbrk2_tile = vbrk_tile vbrk_loc = loc vbrk_tile = tile assert vbrk_loc is not None assert vbrk_tile is not None assert vbrk_tile not in synth_tiles['tiles'] vbrk_vpr_loc = map_tile_to_vpr_coord(conn, vbrk_tile) synth_tiles['tiles'][vbrk_tile] = { 'loc': vbrk_vpr_loc, 'pins': [ { 'wire': 'VCC', 'pad': 'VCC', 'port_type': 'VCC', 'is_clock': False, 'z_loc': '0', }, ], } assert vbrk2_loc is not None assert vbrk2_tile is not None assert vbrk2_tile not in synth_tiles['tiles'] vbrk2_vpr_loc = map_tile_to_vpr_coord(conn, vbrk2_tile) synth_tiles['tiles'][vbrk2_tile] = { 'loc': vbrk2_vpr_loc, 'pins': [ { 'wire': 'GND', 'pad': 'GND', 'port_type': 'GND', 'is_clock': False, 'z_loc': '0', }, ], } with open(args.synth_tiles, 'w') as f: json.dump(synth_tiles, f, indent=2)
def main(): mydir = os.path.dirname(__file__) prjxray_db = os.path.abspath(os.path.join(mydir, "..", "..", "third_party", "prjxray-db")) db_types = prjxray.db.get_available_databases(prjxray_db) parser = argparse.ArgumentParser(description="Generate arch.xml") parser.add_argument( '--part', choices=[os.path.basename(db_type) for db_type in db_types], help="""Project X-Ray database to use.""") parser.add_argument( '--output-arch', nargs='?', type=argparse.FileType('w'), help="""File to output arch.""") parser.add_argument('--tile-types', help="Semi-colon seperated tile types.") parser.add_argument( '--pin_assignments', required=True, type=argparse.FileType('r')) parser.add_argument( '--use_roi', required=False) parser.add_argument( '--synth_tiles', required=False) parser.add_argument( '--device', required=True) args = parser.parse_args() tile_types = args.tile_types.split(',') tile_model = "../../tiles/{0}/{0}.model.xml" tile_pbtype = "../../tiles/{0}/{0}.pb_type.xml" xi_url = "http://www.w3.org/2001/XInclude" ET.register_namespace('xi', xi_url) xi_include = "{%s}include" % xi_url arch_xml = ET.Element( 'architecture', {}, nsmap = {'xi': xi_url}, ) model_xml = ET.SubElement(arch_xml, 'models') for tile_type in tile_types: ET.SubElement(model_xml, xi_include, { 'href': tile_model.format(tile_type.lower()), 'xpointer':"xpointer(models/child::node())", }) complexblocklist_xml = ET.SubElement(arch_xml, 'complexblocklist') for tile_type in tile_types: ET.SubElement(complexblocklist_xml, xi_include, { 'href': tile_pbtype.format(tile_type.lower()), }) layout_xml = ET.SubElement(arch_xml, 'layout') db = prjxray.db.Database(os.path.join(prjxray_db, args.part)) g = db.grid() x_min, x_max, y_min, y_max = g.dims() # FIXME: There is an issue in the routing phase. (https://github.com/SymbiFlow/symbiflow-arch-defs/issues/353) # if a zynq device is selected the grid must be expanded by 1 if args.device == 'xc7z010': x_max += 1 y_max += 1 name = '{}-test'.format(args.device) fixed_layout_xml = ET.SubElement(layout_xml, 'fixed_layout', { 'name': name, 'height': str(y_max+1), 'width': str(x_max+1), }) only_emit_roi = False roi_inputs = [] roi_outputs = [] synth_tiles = {} synth_tiles['tiles'] = {} if args.use_roi: only_emit_roi = True with open(args.use_roi) as f: j = json.load(f) roi = Roi( db=db, x1=j['info']['GRID_X_MIN'], y1=j['info']['GRID_Y_MIN'], x2=j['info']['GRID_X_MAX'], y2=j['info']['GRID_Y_MAX'], ) synth_tiles['info'] = j['info'] for port in j['ports']: if port['name'].startswith('dout['): roi_outputs.append(port) port_type = 'input' is_clock = False elif port['name'].startswith('din['): roi_inputs.append(port) is_clock = False port_type = 'output' elif port['name'].startswith('clk'): roi_inputs.append(port) port_type = 'output' is_clock = True else: assert False, port tile, wire = port['wire'].split('/') # Make sure connecting wire is not in ROI! loc = g.loc_of_tilename(tile) if roi.tile_in_roi(loc): # Or if in the ROI, make sure it has no sites. gridinfo = g.gridinfo_at_tilename(tile) assert len(db.get_tile_type(gridinfo.tile_type).get_sites()) == 0, tile if tile not in synth_tiles['tiles']: synth_tiles['tiles'][tile] = { 'pins': [], 'loc': g.loc_of_tilename(tile), } synth_tiles['tiles'][tile]['pins'].append({ 'roi_name': port['name'].replace('[', '_').replace(']','_'), 'wire': wire, 'pad': port['pin'], 'port_type': port_type, 'is_clock': is_clock, }) with open(args.synth_tiles, 'w') as f: json.dump(synth_tiles, f) synth_tile_map = add_synthetic_tile(complexblocklist_xml) for loc in g.tile_locations(): gridinfo = g.gridinfo_at_loc(loc) tile = g.tilename_at_loc(loc) if tile in synth_tiles['tiles']: synth_tile = synth_tiles['tiles'][tile] assert len(synth_tile['pins']) == 1 vpr_tile_type = synth_tile_map[synth_tile['pins'][0]['port_type']] elif only_emit_roi and not roi.tile_in_roi(loc): # This tile is outside the ROI, skip it. continue elif gridinfo.tile_type in tile_types: # We want to import this tile type. vpr_tile_type = 'BLK_TI-{}'.format(gridinfo.tile_type) else: # We don't want this tile continue is_vbrk = gridinfo.tile_type.find('VBRK') != -1 # VBRK tiles are known to have no bitstream data. if not is_vbrk and not gridinfo.bits: print('*** WARNING *** Skipping tile {} because it lacks bitstream data.'.format(tile), file=sys.stderr) single_xml = ET.SubElement(fixed_layout_xml, 'single', { 'priority': '1', 'type': vpr_tile_type, 'x': str(loc[0]), 'y': str(loc[1]), }) meta = ET.SubElement(single_xml, 'metadata') ET.SubElement(meta, 'meta', { 'name': 'fasm_prefix', }).text = tile device_xml = ET.SubElement(arch_xml, 'device') ET.SubElement(device_xml, 'sizing', { "R_minW_nmos":"6065.520020", "R_minW_pmos":"18138.500000", }) ET.SubElement(device_xml, 'area', { "grid_logic_tile_area":"14813.392", }) ET.SubElement(device_xml, 'connection_block', { "input_switch_name":"buffer", }) ET.SubElement(device_xml, 'switch_block', { "type":"wilton", "fs":"3", }) chan_width_distr_xml = ET.SubElement(device_xml, 'chan_width_distr') ET.SubElement(chan_width_distr_xml, 'x', { 'distr':'uniform', 'peak':'1.0', }) ET.SubElement(chan_width_distr_xml, 'y', { 'distr':'uniform', 'peak':'1.0', }) switchlist_xml = ET.SubElement(arch_xml, 'switchlist') ET.SubElement(switchlist_xml, 'switch', { 'type':'mux', 'name':'routing', "R":"551", "Cin":".77e-15", "Cout":"4e-15", "Tdel":"6.8e-12", "mux_trans_size":"2.630740", "buf_size":"27.645901" }) ET.SubElement(switchlist_xml, 'switch', { 'type':'mux', 'name':'buffer', "R":"551", "Cin":".77e-15", "Cout":"4e-15", "Tdel":"6.8e-12", "mux_trans_size":"2.630740", "buf_size":"27.645901" }) segmentlist_xml = ET.SubElement(arch_xml, 'segmentlist') # VPR requires a segment, so add one. dummy_xml = ET.SubElement(segmentlist_xml, 'segment', { 'name': 'dummy', 'length': '12', 'freq': '1.0', 'type': 'bidir', 'Rmetal':'101', 'Cmetal':'22.5e15', }) ET.SubElement(dummy_xml, 'wire_switch', { 'name': 'routing', }) ET.SubElement(dummy_xml, 'opin_switch', { 'name': 'routing', }) ET.SubElement(dummy_xml, 'sb', { 'type': 'pattern', }).text = ' '.join('1' for _ in range(13)) ET.SubElement(dummy_xml, 'cb', { 'type': 'pattern', }).text = ' '.join('1' for _ in range(12)) directlist_xml = ET.SubElement(arch_xml, 'directlist') pin_assignments = json.load(args.pin_assignments) # Choose smallest distance for block to block connections with multiple # direct_connections. VPR cannot handle multiple block to block connections. directs = {} for direct in pin_assignments['direct_connections']: key = (direct['from_pin'], direct['to_pin']) if key not in directs: directs[key] = [] directs[key].append((abs(direct['x_offset']) + abs(direct['y_offset']), direct)) for direct in directs.values(): _, direct = min(direct, key=lambda v: v[0]) if direct['from_pin'].split('.')[0] not in tile_types: continue if direct['to_pin'].split('.')[0] not in tile_types: continue if direct['x_offset'] == 0 and direct['y_offset'] == 0: continue ET.SubElement(directlist_xml, 'direct', { 'name': '{}_to_{}_dx_{}_dy_{}'.format(direct['from_pin'], direct['to_pin'], direct['x_offset'], direct['y_offset']), 'from_pin': 'BLK_TI-' + direct['from_pin'], 'to_pin': 'BLK_TI-' + direct['to_pin'], 'x_offset': str(direct['x_offset']), 'y_offset': str(direct['y_offset']), 'z_offset': '0', 'switch_name': direct['switch_name'], }) arch_xml_str = ET.tostring(arch_xml, pretty_print=True).decode('utf-8') args.output_arch.write(arch_xml_str) args.output_arch.close()
def main(): parser = argparse.ArgumentParser() parser.add_argument( '--db_root', required=True, help='Project X-Ray Database') parser.add_argument( '--read_rr_graph', required=True, help='Input rr_graph file') parser.add_argument( '--write_rr_graph', required=True, help='Output rr_graph file') parser.add_argument( '--channels', required=True, help='Channel definitions from prjxray_form_channels') parser.add_argument( '--synth_tiles', help='If using an ROI, synthetic tile defintion from prjxray-arch-import') args = parser.parse_args() db = prjxray.db.Database(args.db_root) grid = db.grid() if args.synth_tiles: use_roi = True with open(args.synth_tiles) as f: synth_tiles = json.load(f) roi = Roi( db=db, x1=synth_tiles['info']['GRID_X_MIN'], y1=synth_tiles['info']['GRID_Y_MIN'], x2=synth_tiles['info']['GRID_X_MAX'], y2=synth_tiles['info']['GRID_Y_MAX'], ) print('{} generating routing graph for ROI.'.format(now())) else: use_roi = False # Convert input rr graph into graph2.Graph object. input_rr_graph = read_xml_file(args.read_rr_graph) xml_graph = xml_graph2.Graph( input_rr_graph, progressbar=progressbar.progressbar) graph = xml_graph.graph tool_version = input_rr_graph.getroot().attrib['tool_version'] tool_comment = input_rr_graph.getroot().attrib['tool_comment'] delayless_switch = graph.get_delayless_switch_id() print('{} reading channels definitions.'.format(now())) with open(args.channels) as f: channels = json.load(f) segment_id = graph.get_segment_id_from_name('dummy') track_wire_map = {} print('{} add nodes for all channels.'.format(now())) used_channels = 0 for idx, channel in progressbar.progressbar(enumerate(channels['channels'])): # Don't use dead channels if using an ROI. # Consider a channel alive if at least 1 wire in the node is part of a # live tile. if use_roi: alive = False for tile, wire in channel['wires']: loc = grid.loc_of_tilename(tile) if roi.tile_in_roi(loc) or tile in synth_tiles['tiles']: alive = True break if not alive: continue used_channels += 1 nodes = [] track_list = [] for idx2, track_dict in enumerate(channel['tracks']): if track_dict['direction'] == 'X': track_dict['x_low'] = max(track_dict['x_low'], 1) elif track_dict['direction'] == 'Y': track_dict['y_low'] = max(track_dict['y_low'], 1) track = tracks.Track(**track_dict) track_list.append(track) nodes.append(graph.add_track(track=track, segment_id=segment_id, name='track_{}_{}'.format(idx, idx2))) for a_idx, b_idx in channel['track_connections']: graph.add_edge(nodes[a_idx], nodes[b_idx], delayless_switch, 'track_{}_to_{}'.format(a_idx, b_idx)) graph.add_edge(nodes[b_idx], nodes[a_idx], delayless_switch, 'track_{}_to_{}'.format(b_idx, a_idx)) tracks_model = tracks.Tracks(track_list, channel['track_connections']) for tile, wire in channel['wires']: track_wire_map[(tile, wire)] = (tracks_model, nodes) print('original {} final {}'.format(len(channels['channels']), used_channels)) routing_switch = graph.get_switch_id('routing') pip_map = {} edges_with_mux = {} for idx, edge_with_mux in progressbar.progressbar(enumerate(channels['edges_with_mux'])): if edge_with_mux['pip'] not in edges_with_mux: edges_with_mux[edge_with_mux['pip']] = {} assert len(edge_with_mux['source_node']) == 1 edges_with_mux[edge_with_mux['pip']][tuple(edge_with_mux['source_node'][0])] = edge_with_mux['destination_node'] # Set of (src, sink, switch_id) tuples that pip edges have been sent to # VPR. VPR cannot handle duplicate paths with the same switch id. pip_set = set() print('{} Adding edges'.format(now())) for loc in progressbar.progressbar(grid.tile_locations()): gridinfo = grid.gridinfo_at_loc(loc) tile_name = grid.tilename_at_loc(loc) if use_roi: if tile_name in synth_tiles['tiles']: assert len(synth_tiles['tiles'][tile_name]['pins']) == 1 for pin in synth_tiles['tiles'][tile_name]['pins']: tracks_model, track_nodes = track_wire_map[(tile_name, pin['wire'])] option = list(tracks_model.get_tracks_for_wire_at_coord(loc)) assert len(option) > 0 if pin['port_type'] == 'input': tile_type = 'BLK_SY-OUTPAD' wire = 'outpad' elif pin['port_type'] == 'output': tile_type = 'BLK_SY-INPAD' wire = 'inpad' else: assert False, pin track_node = track_nodes[option[0][0]] pin_name = graph.create_pin_name_from_tile_type_and_pin( tile_type, wire) pin_node = graph.get_nodes_for_pin(loc, pin_name) if pin['port_type'] == 'input': graph.add_edge( src_node=track_node, sink_node=pin_node[0][0], switch_id=routing_switch, name='synth_{}_{}'.format(tile_name, pin['wire']), ) elif pin['port_type'] == 'output': graph.add_edge( src_node=pin_node[0][0], sink_node=track_node, switch_id=routing_switch, name='synth_{}_{}'.format(tile_name, pin['wire']), ) else: assert False, pin else: # Not a synth node, check if in ROI. if not roi.tile_in_roi(loc): continue tile_type = db.get_tile_type(gridinfo.tile_type) for pip in tile_type.get_pips(): if pip.is_pseudo: continue if not pip.is_directional: # TODO: Handle bidirectional pips? continue edge_node = make_connection(graph, track_wire_map, loc, tile_name, gridinfo.tile_type, pip, routing_switch, edges_with_mux, grid, pip_set) if edge_node is not None: pip_map[(tile_name, pip.name)] = edge_node print('{} Writing node mapping.'.format(now())) node_mapping = { 'pips': [], 'tracks': [] } for (tile, pip_name), edge in pip_map.items(): node_mapping['pips'].append({ 'tile': tile, 'pip': pip_name, 'edge': edge }) for (tile, wire), (_, nodes) in track_wire_map.items(): node_mapping['tracks'].append({ 'tile': tile, 'wire': wire, 'nodes': nodes, }) with open('node_mapping.pickle', 'wb') as f: pickle.dump(node_mapping, f) print('{} Create channels and serializing.'.format(now())) pool = multiprocessing.Pool(10) serialized_rr_graph = xml_graph.serialize_to_xml( tool_version=tool_version, tool_comment=tool_comment, pad_segment=segment_id, pool=pool, ) print('{} Writing to disk.'.format(now())) with open(args.write_rr_graph, "wb") as f: f.write(serialized_rr_graph) print('{} Done.'.format(now()))
def main(): parser = argparse.ArgumentParser(description="Generate synth_tiles.json") parser.add_argument('--db_root', required=True) parser.add_argument('--part', required=True) parser.add_argument('--roi', required=True) parser.add_argument('--connection_database', help='Connection database', required=True) parser.add_argument('--synth_tiles', required=True) args = parser.parse_args() db = prjxray.db.Database(args.db_root, args.part) g = db.grid() synth_tiles = {} synth_tiles['tiles'] = {} with open(args.roi) as f: j = json.load(f) roi = Roi( db=db, x1=j['info']['GRID_X_MIN'], y1=j['info']['GRID_Y_MIN'], x2=j['info']['GRID_X_MAX'], y2=j['info']['GRID_Y_MAX'], ) with DatabaseCache(args.connection_database, read_only=True) as conn: synth_tiles['info'] = j['info'] vbrk_in_use = set() for port in j['ports']: if port['name'].startswith('dout['): port_type = 'input' is_clock = False elif port['name'].startswith('din['): is_clock = False port_type = 'output' elif port['name'].startswith('clk'): port_type = 'output' is_clock = True else: assert False, port tile, wire = port['wire'].split('/') vbrk_in_use.add(tile) # Make sure connecting wire is not in ROI! loc = g.loc_of_tilename(tile) if roi.tile_in_roi(loc): # Or if in the ROI, make sure it has no sites. gridinfo = g.gridinfo_at_tilename(tile) assert len(db.get_tile_type( gridinfo.tile_type).get_sites()) == 0, tile vpr_loc = map_tile_to_vpr_coord(conn, tile) if tile not in synth_tiles['tiles']: synth_tiles['tiles'][tile] = { 'pins': [], 'loc': vpr_loc, } synth_tiles['tiles'][tile]['pins'].append({ 'roi_name': port['name'].replace('[', '_').replace(']', '_'), 'wire': wire, 'pad': port['pin'], 'port_type': port_type, 'is_clock': is_clock, }) # Find two VBRK's in the corner of the fabric to use as the synthetic VCC/ # GND source. vbrk_loc = None vbrk_tile = None vbrk2_loc = None vbrk2_tile = None for tile in g.tiles(): if tile in vbrk_in_use: continue loc = g.loc_of_tilename(tile) if not roi.tile_in_roi(loc): continue gridinfo = g.gridinfo_at_tilename(tile) if 'VBRK' not in gridinfo.tile_type: continue assert len(db.get_tile_type( gridinfo.tile_type).get_sites()) == 0, tile if vbrk_loc is None: vbrk2_loc = vbrk_loc vbrk2_tile = vbrk_tile vbrk_loc = loc vbrk_tile = tile else: if (loc.grid_x < vbrk_loc.grid_x and loc.grid_y < vbrk_loc.grid_y) or vbrk2_loc is None: vbrk2_loc = vbrk_loc vbrk2_tile = vbrk_tile vbrk_loc = loc vbrk_tile = tile assert vbrk_loc is not None assert vbrk_tile is not None assert vbrk_tile not in synth_tiles['tiles'] vbrk_vpr_loc = map_tile_to_vpr_coord(conn, vbrk_tile) synth_tiles['tiles'][vbrk_tile] = { 'loc': vbrk_vpr_loc, 'pins': [ { 'wire': 'VCC', 'pad': 'VCC', 'port_type': 'VCC', 'is_clock': False, }, ], } assert vbrk2_loc is not None assert vbrk2_tile is not None assert vbrk2_tile not in synth_tiles['tiles'] vbrk2_vpr_loc = map_tile_to_vpr_coord(conn, vbrk2_tile) synth_tiles['tiles'][vbrk2_tile] = { 'loc': vbrk2_vpr_loc, 'pins': [ { 'wire': 'GND', 'pad': 'GND', 'port_type': 'GND', 'is_clock': False, }, ], } with open(args.synth_tiles, 'w') as f: json.dump(synth_tiles, f, indent=2)
def main(): parser = argparse.ArgumentParser(description="Generate synth_tiles.json") parser.add_argument( '--db_root', required=True) parser.add_argument( '--roi', required=True) parser.add_argument( '--synth_tiles', required=False) args = parser.parse_args() db = prjxray.db.Database(args.db_root) g = db.grid() synth_tiles = {} synth_tiles['tiles'] = {} with open(args.roi) as f: j = json.load(f) roi = Roi( db=db, x1=j['info']['GRID_X_MIN'], y1=j['info']['GRID_Y_MIN'], x2=j['info']['GRID_X_MAX'], y2=j['info']['GRID_Y_MAX'], ) synth_tiles['info'] = j['info'] for port in j['ports']: if port['name'].startswith('dout['): port_type = 'input' is_clock = False elif port['name'].startswith('din['): is_clock = False port_type = 'output' elif port['name'].startswith('clk'): port_type = 'output' is_clock = True else: assert False, port tile, wire = port['wire'].split('/') # Make sure connecting wire is not in ROI! loc = g.loc_of_tilename(tile) if roi.tile_in_roi(loc): # Or if in the ROI, make sure it has no sites. gridinfo = g.gridinfo_at_tilename(tile) assert len(db.get_tile_type(gridinfo.tile_type).get_sites()) == 0, tile if tile not in synth_tiles['tiles']: synth_tiles['tiles'][tile] = { 'pins': [], 'loc': g.loc_of_tilename(tile), } synth_tiles['tiles'][tile]['pins'].append({ 'roi_name': port['name'].replace('[', '_').replace(']','_'), 'wire': wire, 'pad': port['pin'], 'port_type': port_type, 'is_clock': is_clock, }) with open(args.synth_tiles, 'w') as f: json.dump(synth_tiles, f)