def test_draw_ulh_with_minuit(): np.random.seed(0) data = np.random.randn(1000) plt.figure() ulh = UnbinnedLH(gaussian, data) minuit = Minuit(ulh, mean=0, sigma=1) ulh.draw(minuit)
def test_draw_residual_ulh_norm(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) ulh.draw_residual(args=(0., 1.), norm=True) plt.ylim(-7., 3.) plt.xlim(-4., 3.)
def test_draw_residual_ulh_norm_options(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) ulh.draw_residual(args=(0., 1.), norm=True, color='green', capsize=2, grid=False, zero_line=False)
def test_ulh_with_parts(): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3. data = np.append(data, [shifted]) g1 = rename(gaussian, ['x', 'lmu', 'lsigma']) g2 = rename(gaussian, ['x', 'rmu', 'rsigma']) allpdf = AddPdfNorm(g1, g2) ulh = UnbinnedLH(allpdf, data) ulh.draw(args=(0, 1, 3, 1, 0.5), parts=True)
def test_draw_simultaneous(): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3. g1 = rename(gaussian, ['x', 'lmu', 'sigma']) g2 = rename(gaussian, ['x', 'rmu', 'sigma']) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2) sim.draw(args=(0, 1, 3))
def test_draw_simultaneous_prefix(): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3. g1 = rename(gaussian, ['x', 'lmu', 'sigma']) g2 = rename(gaussian, ['x', 'rmu', 'sigma']) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2, prefix=['g1_', 'g2_']) minuit = Minuit(sim, g1_lmu=0., g1_sigma=1., g2_rmu=0., g2_sigma=1., print_level=0) minuit.migrad() sim.draw(minuit)
def test_draw_simultaneous_prefix(): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3.0 g1 = rename(gaussian, ["x", "lmu", "sigma"]) g2 = rename(gaussian, ["x", "rmu", "sigma"]) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2, prefix=["g1_", "g2_"]) minuit = Minuit( sim, g1_lmu=0.0, g1_sigma=1.0, g2_rmu=0.0, g2_sigma=1.0, print_level=0 ) minuit.migrad() sim.draw(minuit)
def test_UnbinnedLH(self): f = gaussian assert_equal(list(describe(f)), ['x', 'mean', 'sigma']) lh = UnbinnedLH( gaussian, self.data, ) assert_equal(list(describe(lh)), ['mean', 'sigma']) assert_almost_equal(lh(0, 1), 28188.201229348757) minuit = iminuit.Minuit(lh) assert_equal(minuit.errordef, 0.5)
def test_UnbinnedLH(self): f = gaussian assert list(describe(f)) == ['x', 'mean', 'sigma'] lh = UnbinnedLH( gaussian, self.data, ) assert list(describe(lh)) == ['mean', 'sigma'] assert_allclose(lh(0, 1), 28188.201229348757) minuit = iminuit.Minuit(lh) assert_allclose(minuit.errordef, 0.5)
def test_simultaneous(self): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3.0 g1 = rename(gaussian, ["x", "lmu", "sigma"]) g2 = rename(gaussian, ["x", "rmu", "sigma"]) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2) assert describe(sim) == ["lmu", "sigma", "rmu"] minuit = iminuit.Minuit(sim, sigma=1.2, pedantic=False, print_level=0) minuit.migrad() assert minuit.migrad_ok() assert_allclose(minuit.values["lmu"], 0.0, atol=2 * minuit.errors["lmu"]) assert_allclose(minuit.values["rmu"], 3.0, atol=2 * minuit.errors["rmu"]) assert_allclose(minuit.values["sigma"], 1.0, atol=2 * minuit.errors["sigma"])
def test_simultaneous(self): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3. g1 = rename(gaussian, ['x', 'lmu', 'sigma']) g2 = rename(gaussian, ['x', 'rmu', 'sigma']) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2) assert_equal(describe(sim), ['lmu', 'sigma', 'rmu']) minuit = iminuit.Minuit(sim, sigma=1.2, pedantic=False, print_level=0) minuit.migrad() assert (minuit.migrad_ok()) assert_almost_equal(minuit.values['lmu'], 0., delta=2 * minuit.errors['lmu']) assert_almost_equal(minuit.values['rmu'], 3., delta=2 * minuit.errors['rmu']) assert_almost_equal(minuit.values['sigma'], 1., delta=2 * minuit.errors['sigma'])
def test_draw_ulh_extend(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(Extended(gaussian), data, extended=True) ulh.draw(args=(0., 1., 1000))
def test_draw_ulh(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) ulh.draw(args=(0., 1.))
def test_draw_ulh_with_minuit(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) minuit = Minuit(ulh, mean=0, sigma=1) ulh.draw(minuit)
def test_draw_ulh_extend_residual_norm(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(Extended(gaussian), data, extended=True) ulh.draw_residual(args=(0., 1., 1000), norm=True) plt.ylim(-7.,3.)
def test_draw_residual_ulh_norm(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) ulh.draw_residual(args=(0., 1.), norm=True, show_errbars=False)
def test_draw_residual_ulh(): np.random.seed(0) data = np.random.randn(1000) ulh = UnbinnedLH(gaussian, data) ulh.draw_residual(args=(0.0, 1.0))
def test_draw_residual_ulh_norm(): np.random.seed(0) data = np.random.randn(1000) plt.figure() ulh = UnbinnedLH(gaussian, data) ulh.draw_residual(args=(0., 1.), norm=True)