def run_test(): import problem_unittests as t t.test_create_lookup_tables(create_lookup_tables) t.test_get_batches(get_batches) t.test_tokenize(token_lookup) t.test_get_inputs(get_inputs) t.test_get_init_cell(get_init_cell) t.test_get_embed(get_embed) t.test_build_rnn(build_rnn) t.test_build_nn(build_nn) t.test_get_tensors(get_tensors) t.test_pick_word(pick_word)
Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate) """ # TODO: Implement Function inputs = tf.placeholder(dtype=tf.int32, shape=[None, None], name='input') targets = tf.placeholder(dtype=tf.int32, shape=[None, None], name='targets') learning_rate = tf.placeholder(dtype=tf.float32, name='learning_rate') return inputs, targets, learning_rate """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_inputs(get_inputs) # ### Build RNN Cell and Initialize # Stack one or more [`BasicLSTMCells`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell) in a [`MultiRNNCell`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell). # - The Rnn size should be set using `rnn_size` # - Initalize Cell State using the MultiRNNCell's [`zero_state()`](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell#zero_state) function # - Apply the name "initial_state" to the initial state using [`tf.identity()`](https://www.tensorflow.org/api_docs/python/tf/identity) # # Return the cell and initial state in the following tuple `(Cell, InitialState)` # In[48]: def get_init_cell(batch_size, rnn_size): """ Create an RNN Cell and initialize it.