def test_implementation(): tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) tests.test_con_pool(conv2d_maxpool) tests.test_flatten(flatten) tests.test_fully_conn(fully_conn) tests.test_output(output) build_cnn() tests.test_conv_net(conv_net) tests.test_train_nn(train_neural_network)
def run_tests(): import problem_unittests as t t.test_folder_path(cifar10_dataset_folder_path) t.test_normalize(normalize) t.test_one_hot_encode(one_hot_encode) t.test_nn_image_inputs(neural_net_image_input) t.test_nn_label_inputs(neural_net_label_input) t.test_nn_keep_prob_inputs(neural_net_keep_prob_input) t.test_con_pool(conv2conv2d_maxpool) t.test_flatten(flatten) t.test_fully_conn(fully_conn) t.test_output(output) t.test_conv_net(conv_net) t.test_train_nn(train_neural_network)
""" Return a Tensor for keep probability : return: Tensor for keep probability. """ # TODO: Implement Function keep_prob = tf.placeholder(tf.float32, name = "keep_prob") return keep_prob """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) # ### Convolution and Max Pooling Layer # Convolution layers have a lot of success with images. For this code cell, you should implement the function `conv2d_maxpool` to apply convolution then max pooling: # * Create the weight and bias using `conv_ksize`, `conv_num_outputs` and the shape of `x_tensor`. # * Apply a convolution to `x_tensor` using weight and `conv_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # * Add bias # * Add a nonlinear activation to the convolution. # * Apply Max Pooling using `pool_ksize` and `pool_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # In[ ]:
def neural_net_keep_prob_input(): """ Return a Tensor for keep probability : return: Tensor for keep probability. """ # TODO: Implement Function return tf.placeholder(tf.float32, name='keep_prob') """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) # ### Convolution and Max Pooling Layer # Convolution layers have a lot of success with images. For this code cell, you should implement the function `conv2d_maxpool` to apply convolution then max pooling: # * Create the weight and bias using `conv_ksize`, `conv_num_outputs` and the shape of `x_tensor`. # * Apply a convolution to `x_tensor` using weight and `conv_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # * Add bias # * Add a nonlinear activation to the convolution. # * Apply Max Pooling using `pool_ksize` and `pool_strides`. # * We recommend you use same padding, but you're welcome to use any padding. # # **Note:** You **can't** use [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) for **this** layer, but you can still use TensorFlow's [Neural Network](https://www.tensorflow.org/api_docs/python/tf/nn) package. You may still use the shortcut option for all the **other** layers.
def runLabelInputTests(self): tests.test_nn_label_inputs(neural_net_label_input) print("Model LabelInputTests Ran Successfully")