Пример #1
0
def calcPosition_Multilateration(d,nSensor,nAnchor,sigma,radiorange,iteN,typeE,typeC):
    print "Multilateraitonによる位置計算を開始"
    print ""
    locSensorNs = []
    RMSDs =[]
    RMSDs_modified=[]
    i=0
    breachN = 0
    while i-breachN < iteN:
        [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,cLevel] = problems.createProblem_random(d,nSensor,nAnchor,sigma,radiorange,i)
        multi.localizeByMultilateration(nSensor,nAnchor,sigma,radiorange,locX,conX,estPosX,noisyDisX,cLevel,typeE,typeC)
        [nLocSensor,preLocSensor] = helper.analyseLocalizability(nSensor,nAnchor,locX)
        locSensorNs.append(nLocSensor)
        rmsd = helper.calcRMSD(nSensor,locX,posX,estPosX)
        RMSDs.append(rmsd)
        if rmsd <1.5:
            RMSDs_modified.append(rmsd)
        else: breachN +=1
        i+=1
        print rmsd
    perLocSensor = sum(locSensorNs)/nSensor/iteN
    perMinLocSensor = min(locSensorNs)/nSensor
    perMaxLocSensor = max(locSensorNs)/nSensor
    [aveRMSD,minRMSD,maxRMSD] = helper.analyseRMSDs(RMSDs)

    [aveRMSD_modified,minRMSD_modified,maxRMSD_modified]= helper.analyseRMSDs(RMSDs_modified)
    return [perLocSensor,perMinLocSensor,perMaxLocSensor,aveRMSD,minRMSD,maxRMSD,aveRMSD_modified,breachN]
Пример #2
0
def noiseImpactSearch(d,nSensor,nAnchor,sigmas,radiorange):
    graph.setLimit()
    for i in range(len(sigmas)):
        graph.setGraph()

        [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,cLevel] = problems.createProblem_random(d,nSensor,nAnchor,sigma,radiorange,0)
        multi.localizeByMultilateration(nSensor,nAnchor,locX,conX,estPosX,noisyDisX,cLevel,0,0)
        rmsd = helper.calcRMSD(nSensor,locX,posX,estPosX)
        graph.plotPoint2D(estPosX,"")
        print rmsd
    graph.show()
Пример #3
0
def paramSearch(d,nSensor,nAnchor,radiorange,iteN):
    sumLocSensor = 0
    minNLocSensor = sys.maxint
    maxNLocSensor = 0
    for i in range(iteN):
        [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,cLevel] = problems.createProblem_random(d,nSensor,nAnchor,sigma,radiorange,i)
        tri.checkLocalizability(nSensor,locX,conX)
        [nLocSensor,preLocSensor] = helper.analyseLocalizability(nSensor,nAnchor,locX)
        sumLocSensor += nLocSensor
        minNLocSensor = min(minNLocSensor,nLocSensor)
        maxNLocSensor = max(maxNLocSensor,nLocSensor)
        print nLocSensor
    aveNLocSensor = sumLocSensor / iteN
    perLocSensor = aveNLocSensor/nSensor
    perMinLocSensor = minNLocSensor / nSensor
    perMaxLocSensor = maxNLocSensor / nSensor
    return [perLocSensor,perMinLocSensor,perMaxLocSensor]
Пример #4
0
def calcPosition_Trilateration(d,nSensor,nAnchor,sigma,radiorange,iteN,type):
    print "Trilaterationによる位置計算を開始"
    locSensorNs = []
    RMSDs =[]
    for i in range(iteN):
        [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,cLevel] = problems.createProblem_random(d,nSensor,nAnchor,sigma,radiorange,i+100)
        if type==1:tri.localizeByTrilateration(nSensor,nAnchor,locX,conX,estPosX,noisyDisX,cLevel)
        [nLocSensor,preLocSensor] = helper.analyseLocalizability(nSensor,nAnchor,locX)

        locSensorNs.append(nLocSensor)
        rmsd = helper.calcRMSD(nSensor,locX,posX,estPosX)
        RMSDs.append(rmsd)

        print nLocSensor
        print rmsd
    perLocSensor = sum(locSensorNs)/nSensor/iteN
    perMinLocSensor = min(locSensorNs)/nSensor
    perMaxLocSensor = max(locSensorNs)/nSensor
    [aveRMSD,minRMSD,maxRMSD] = helper.analyseRMSDs(RMSDs)
    RMSDsModified = [elem for elem in RMSDs if elem<1]
    [aveRMSD_modified,a,b]= helper.analyseRMSDs(RMSDsModified)
    return [perLocSensor,perMinLocSensor,perMaxLocSensor,aveRMSD,minRMSD,maxRMSD,aveRMSD_modified]
Пример #5
0
def clusteringByWheel(d,nSensor,radiorange):
    [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,cLevel] = problems.createProblem_random(d,nSensor,0,0,radiorange)
    nNode = len(conX)
    isWheelHub = np.zeros(nNode)
    for i in range(0,nNode):
        c = conX[i]
        indexes = np.where(c == 1)[0]
        if len(indexes) >=3:
            indexes = np.insert(indexes,0,i)
            localConX = np.array([[conX[k][j] for k in indexes] for j in indexes])
            if wheel.isWheelHub(0,localConX):
                isWheelHub[i] = 1

    for i in range(nNode):
        if isWheelHub[i] == 1:
            dot = "or"
        else :
            dot = "ob"
        pylab.plot(posX[i][0],posX[i][1],dot)
        for j in range(nNode):
            if conX[i][j] == 1:
                pylab.plot([posX[i][0],posX[j][0]],[posX[i][1],posX[j][1]],"g-")
    pylab.show()
Пример #6
0
            pylab.plot(posX[i][0],posX[i][1],"ob")
            pylab.plot(estPosX[i][0],estPosX[i][1],"oc")
            pylab.plot(estPosX2[i][0],estPosX2[i][1],"og")
        else :
            pylab.plot(posX[i][0],posX[i][1],"xb")
    # アンカーをプロット
    for i in range(nSensor,nSensor+nAnchor):
        pylab.plot(posX[i][0],posX[i][1],"or")

if __name__ == "__main__":
    d=2
    nSensor=5
    nAnchor=5
    sigma=0.1
    radiorange=20
    [posX,locX,disX,conX,noisyDisX,trueDisX,estPosX,noiseLevel] = problems.createProblem_random(d,nSensor,nAnchor,sigma,radiorange)
    localizeByTrilateration(nSensor,nAnchor,locX,conX,estPosX,noisyDisX,noiseLevel)
    estPosX2 = copy.deepcopy(estPosX)
    # func = function.DistanceFunction(0,3,estPosX,noisyDisX)
    func = function.DistanceFunction1(nSensor,nAnchor,posX,noisyDisX,conX)
    print func.getValue()
    # print func.posX
    for i in range(10):
        if np.linalg.norm(func.dx)<0.001:break
        func.nextStep()
    print posX[0]
    print estPosX2
    print estPosX
    drawGraph1(nSensor,nAnchor,locX,posX,estPosX)
    pylab.show()
    # print func.posX