Пример #1
0
def benes_daum():
    """Benes-Daum testcase, example 10.17 in Applied SDEs."""
    def f(t, x):
        return np.tanh(x)

    def df(t, x):
        return 1.0 - np.tanh(x)**2

    def l(t):
        return np.ones(1)

    initmean = np.zeros(1)
    initcov = 3.0 * np.eye(1)
    initrv = Normal(initmean, initcov)
    dynamod = pnss.SDE(dimension=1, driftfun=f, dispmatfun=l, jacobfun=df)
    measmod = pnss.DiscreteLTIGaussian(np.eye(1), np.zeros(1), np.eye(1))
    return dynamod, measmod, initrv, {}
Пример #2
0
    def _setup(self, test_ndim, spdmat1):

        self.g = lambda t, x: np.sin(x)
        self.L = lambda t: spdmat1
        self.dg = lambda t, x: np.cos(x)
        self.transition = pnss.SDE(test_ndim, self.g, self.L, self.dg)
def benes_daum(
    measurement_variance: FloatArgType = 0.1,
    process_diffusion: FloatArgType = 1.0,
    time_grid: Optional[np.ndarray] = None,
    initrv: Optional[randvars.RandomVariable] = None,
):
    r"""Filtering/smoothing setup based on the Beneš SDE.

    A non-linear state space model for the dynamics of a Beneš SDE.
    Here, we formulate a continuous-discrete state space model:

    .. math::

        d x(t) &= \tanh(x(t)) d t + L d w(t) \\
        y_n &= x(t_n) + r_n

    for a driving Wiener process :math:`w(t)` and Gaussian distributed measurement noise
    :math:`r_n \sim \mathcal{N}(0, R)` with measurement noise
    covariance matrix :math:`R`.

    Parameters
    ----------
    measurement_variance
        Marginal measurement variance.
    process_diffusion
        Diffusion constant for the dynamics
    time_grid
        Time grid for the filtering/smoothing problem.
    initrv
        Initial random variable.

    Returns
    -------
    regression_problem
        ``RegressionProblem`` object with time points and noisy observations.
    statespace_components
        Dictionary containing

        * dynamics model
        * measurement model
        * initial random variable

    Notes
    -----
    In order to generate observations for the returned ``RegressionProblem`` object,
    the non-linear Beneš SDE has to be linearized.
    Here, a ``ContinuousEKFComponent`` is used, which corresponds to a first-order
    linearization as used in the extended Kalman filter.
    """

    def f(t, x):
        return np.tanh(x)

    def df(t, x):
        return 1.0 - np.tanh(x) ** 2

    def l(t):
        return process_diffusion * np.ones(1)

    if initrv is None:
        initrv = randvars.Normal(np.zeros(1), 3.0 * np.eye(1))

    dynamics_model = statespace.SDE(dimension=1, driftfun=f, dispmatfun=l, jacobfun=df)
    measurement_model = statespace.DiscreteLTIGaussian(
        state_trans_mat=np.eye(1),
        shift_vec=np.zeros(1),
        proc_noise_cov_mat=measurement_variance * np.eye(1),
    )

    # Generate data
    if time_grid is None:
        time_grid = np.arange(0.0, 4.0, step=0.2)
    # The non-linear dynamics are linearized according to an EKF in order
    # to generate samples.
    linearized_dynamics_model = filtsmooth.ContinuousEKFComponent(
        non_linear_model=dynamics_model
    )
    states, obs = statespace.generate_samples(
        dynmod=linearized_dynamics_model,
        measmod=measurement_model,
        initrv=initrv,
        times=time_grid,
    )
    regression_problem = problems.RegressionProblem(
        observations=obs, locations=time_grid, solution=states
    )

    statespace_components = dict(
        dynamics_model=dynamics_model,
        measurement_model=measurement_model,
        initrv=initrv,
    )
    return regression_problem, statespace_components
Пример #4
0
 def test_notimplementederror(self):
     sde = pnss.SDE(1, None, None, None)  # content is irrelevant.
     with self.assertRaises(NotImplementedError):
         pnfs.ContinuousUKFComponent(sde)