Пример #1
0
    def test_metropolis_hastings(self):
        pdf = lambda x: normal.p(x, 0, 1) + normal.p(x, 6, 3)
        log_pdf = lambda x: np.log(normal.p(x, 0, 1) + normal.p(x, 6, 3))

        samples = metropolis_hastings(50000,
                                      pdf,
                                      normal.med(sigma=1.0),
                                      initial=-5)
        fast_samples = fast_metropolis_hastings(
            500000,
            pdf,
            initial=(np.random.rand(100) - 0.5) * 10.0,
            energy=1.0)
        log_fast_samples = fast_metropolis_hastings_log_space(
            500000,
            log_pdf,
            initial=(np.random.rand(100) - 0.5) * 10.0,
            energy=1.0)

        samples_mean = samples[10000:].mean()
        fast_samples_mean = fast_samples[100000:].mean()
        log_fast_samples = log_fast_samples[100000:].mean()

        for i in [samples_mean, fast_samples_mean, log_fast_samples]:
            for j in [samples_mean, fast_samples_mean, log_fast_samples]:
                self.assertAlmostEqual(i, j, delta=0.5)
Пример #2
0
    def test_running_urbk(self):
        prior_rv = normal.med(mu=0.5, sigma=1.0)
        n = normal.fast_p

        prior = jit.jit_probability(prior_rv)

        @numba.jit(fastmath=True, nopython=True, forceobj=False)
        def likelihood(y, w):
            return n(y - w, mu=0.0, sigma=1.0)

        data = normal.sample(mu=3.0, sigma=1.0, size=100)

        log_likelihood, log_prior = jit_log_probabilities((data,), likelihood, prior)

        samples, densities = search_posterior_estimation(
            size=300, log_likelihood=log_likelihood,
            log_prior=log_prior,
            initial=prior_rv.sample(size=10),
            energy=0.1,
            volume=100
        )

        density = URBK(variance=5.0, verbose=True)
        density.fit(samples, densities)

        lb, ub = -6, 6
        n = 2000

        x = np.linspace(lb, ub, n)
        y = density.p(x)
        self.assertEqual(y.size, 2000)

        fast_p = density.get_fast_p()

        fast_p(x)  # is slower than normal p.. but numba need numba functions
Пример #3
0
 def test_metropolis(self):
     pdf = lambda x: normal.p(x, 0, 1) + normal.p(x, 6, 3) + normal.p(
         x, -6, 0.5)
     samples = metropolis(size=100000,
                          pdf=pdf,
                          proposal=normal.med(mu=0, sigma=10),
                          M=30.0)
     self.assertAlmostEqual(samples.mean(), 0.0, delta=0.1)
Пример #4
0
    def posterior(likelihood: RandomVariable,
                  priors: Tuple[RandomVariable]) -> RandomVariable:
        prior = priors[0]

        prior_mu = prior.parameters[normal.mu].value
        prior_sigma = prior.parameters[normal.sigma].value

        likelihood_sigma = likelihood.parameters[normal.sigma].value

        return normal.med(mu=prior_mu, sigma=prior_sigma + likelihood_sigma)
Пример #5
0
    def posterior(data: np.ndarray, likelihood: RandomVariable,
                  prior: RandomVariable) -> RandomVariable:
        data = np.array(data[0])

        n = data.size

        prior_sigma = prior.parameters[normal.sigma].value
        prior_mu = prior.parameters[normal.mu].value

        sigma = likelihood.parameters[normal.sigma].value

        n_sigma = n / sigma
        _inv_prior_sigma = 1 / prior_sigma

        posterior_sigma = 1 / (n_sigma + _inv_prior_sigma)
        posterior_mu = posterior_sigma * ((prior_mu / prior_sigma) +
                                          (data.sum() / sigma))

        return normal.med(mu=posterior_mu, sigma=posterior_sigma)
Пример #6
0
    def test_metropolis_hastings_visual(self):
        pdf = lambda x: normal.p(x, 0, 1) + normal.p(x, 6, 3) + normal.p(
            x, -6, 0.5)
        x = np.linspace(-10, 10, 1000)

        plt.figure(figsize=(10, 6))
        plt.subplot(2, 1, 1)
        sb.lineplot(x, pdf(x))

        plt.subplot(2, 1, 2)
        samples = metropolis_hastings(50000,
                                      pdf,
                                      normal.med(sigma=1.0),
                                      initial=-5)
        samples = samples[1000:]

        sb.distplot(samples)
        plt.xlim([-10, 10])
        plt.savefig("../../images/metropolis-hastings.png",
                    bbox_inches="tight")
        plt.show()
Пример #7
0
    def test_metropolis_visual(self):
        pdf = lambda x: normal.p(x, 0, 1) + normal.p(x, 6, 3) + normal.p(
            x, -6, 0.5)
        x = np.linspace(-10, 10, 1000)

        plt.figure(figsize=(10, 6))
        plt.subplot(2, 1, 1)
        plt.title("True", fontsize=18)
        sb.lineplot(x, pdf(x))

        plt.subplot(2, 1, 2)
        plt.title("Estimated with 1000000 samples", fontsize=18)
        samples = metropolis(size=1000000,
                             pdf=pdf,
                             proposal=normal.med(mu=0, sigma=10),
                             M=30.0)
        sb.distplot(samples)
        plt.tight_layout()
        plt.xlim([-10, 10])
        plt.savefig("../../images/metropolis.png", bbox_inches="tight")
        plt.show()
Пример #8
0
    def test_parameter_posterior_mcmc(self):
        prior_rv = normal.med(mu=0.5, sigma=1.0)
        n = normal.fast_p

        prior = jit.jit_probability(prior_rv)

        @numba.jit(fastmath=True, nopython=True, forceobj=False)
        def likelihood(y, w):
            return n(y - w, mu=0.0, sigma=1.0)

        data = normal.sample(mu=3.0, sigma=1.0, size=100)

        log_likelihood, log_prior = jit_log_probabilities((data, ), likelihood,
                                                          prior)

        result = fast_metropolis_hastings_log_space_parameter_posterior_estimation(
            size=2000,
            log_likelihood=log_likelihood,
            log_prior=log_prior,
            initial=prior_rv.sample(size=10),
            energy=0.1)

        self.assertAlmostEqual(result.mean(), 3.0, delta=1.0)
Пример #9
0
    def test_uniform_importance_sampling_visual(self):
        f = lambda x: -np.square(x) + 3

        plt.figure(figsize=(10, 6))
        for sz in np.logspace(3, 5, 3):
            sz = int(sz)
            results = []
            for i in range(100):
                results.append(
                    uniform_importance_sampling(size=sz,
                                                function=f,
                                                domain=(-2, 2),
                                                proposal=normal.med(mu=0,
                                                                    sigma=2)))

            sb.distplot(results, label=f"size {sz}")
        plt.legend(fontsize=16)
        plt.xticks(fontsize=16)
        plt.yticks(fontsize=16)
        plt.tight_layout()
        plt.savefig("../../images/uniform_importance_sampling.png",
                    bbox_inches="tight")
        plt.show()
Пример #10
0
    def test_parameter_posterior_search(self):
        prior_rv = normal.med(mu=0.5, sigma=1.0)
        n = normal.fast_p

        prior = jit.jit_probability(prior_rv)

        @numba.jit(fastmath=True, nopython=True, forceobj=False)
        def likelihood(y, w):
            return n(y - w, mu=0.0, sigma=1.0)

        data = normal.sample(mu=3.0, sigma=1.0, size=100)

        log_likelihood, log_prior = jit_log_probabilities((data, ), likelihood,
                                                          prior)

        points, densities = search_posterior_estimation(
            size=1000,
            log_likelihood=log_likelihood,
            log_prior=log_prior,
            initial=prior_rv.sample(size=10),
            energy=0.1,
            volume=1000)

        self.assertTrue(True)
Пример #11
0
def univariate_normal_matcher(samples: np.ndarray):
    mean = samples.mean()
    variance = samples.var()
    return normal.med(mu=mean, sigma=variance)
Пример #12
0
    def test_search(self):
        def _run_test(prior=None, likelihood=None, data=None, correct=None):
            posterior = parameter_posterior(data,
                                            likelihood=likelihood,
                                            prior=prior,
                                            samples=20,
                                            batch=5,
                                            energy=0.3,
                                            mode="search")

            if correct is not None:
                pass  # TODO

            print(posterior.cls, pp.mode(posterior))

        mu_prior = np.zeros(2)
        sigma_prior = np.eye(2)
        variables = np.array([2, 1])
        x = np.linspace(-2, 2, 30)
        y = unilinear.sample(x=x, variables=variables, sigma=0.3)
        a = np.zeros(2)
        b = np.ones(2)

        norm_prior = normal.med(mu=1.0, sigma=1.0)
        exp_prior = exponential.med(lam=1.0)
        gam_prior = gamma.med(a=1.0, b=1.0)
        beta_prior = beta.med(a=1.0, b=1.0)

        logistic_x = np.linspace(-5, 5, 50).reshape(-1, 1)
        logistic_y = (logistic_x > 0).astype(np.float).flatten()

        @numba.jit(nopython=True)
        def sigmoid(x):
            return 1 / (1 + np.exp(-x))

        fast_n = normal.fast_p

        def _custom_likelihood(y, x, w):
            return fast_n(y - sigmoid(x * w[0] + w[1]), mu=0.0, sigma=0.5)[0]

        tests = (
            {
                "prior": exponential.med(lam=1.0),
                "likelihood": normal.med(sigma=2.0),
                "data": normal.sample(mu=3.0, sigma=2.0, size=30),
                "correct": None
            },
            {
                "prior": exponential.med(lam=1.0),
                "likelihood": normal.med(mu=1.0),
                "data": normal.sample(mu=1.0, sigma=2.0, size=30),
                "correct": None
            },
            {
                "prior":
                multivariate_uniform.med(a=a, b=b),
                "likelihood":
                multivariate_normal.med(sigma=sigma_prior),
                "data":
                multivariate_normal.sample(mu=mu_prior,
                                           sigma=sigma_prior,
                                           size=30),
                "correct":
                None
            },
            {
                "prior": multivariate_uniform.med(a=a, b=b),
                "likelihood": unilinear.med(sigma=1.0),
                "data": (y, x),
                "correct": None
            },
            {
                "prior": multivariate_normal.med(mu=mu_prior,
                                                 sigma=sigma_prior),
                "likelihood": _custom_likelihood,
                "data": (logistic_y, logistic_x),
                "correct": None
            },
            {
                "prior": exp_prior,
                "likelihood": exponential.med(),
                "data": exp_prior.sample(size=50),
                "correct": None
            },
            {
                "prior": exp_prior,
                "likelihood": normal.med(sigma=1.0),
                "data": norm_prior.sample(size=50),
                "correct": None
            },
            #{
            #    "priors": gam_prior,
            #    "likelihood": bernoulli.med(),
            #    "data": bernoulli.sample(probability=0.6, size=30),
            #    "correct": None
            #},
            #{
            #    "priors": gam_prior,
            #    "likelihood": bernoulli.med(),
            #    "data": bernoulli.sample(probability=0.6, size=30),
            #    "correct": None
            #},
            #{
            #    "priors": (exp_prior, exp_prior),
            #    "likelihood": beta.med(),
            #    "data": beta_prior.sample(size=30),
            #    "correct": None
            #},
            ## {
            ##    "priors": (exp_prior, exp_prior),
            ##    "likelihood": binomial.med(),
            ##    "data": binomial.sample(n=3, probability=0.5, size=30),
            ##    "correct": None
            ## }
            #{
            #    "priors": multivariate_uniform.med(a=np.zeros(3), b=np.ones(3)),
            #    "likelihood": categorical.med(),
            #    "data": categorical.med(probabilities=np.ones(3) / 3).sample(size=30),
            #    "correct": None
            #},
            ## {
            ##    "priors": multivariate_uniform.med(a=np.zeros(3), b=np.ones(3)),
            #    "likelihood": dirichlet.med(),
            #    "data": dirichlet.med(alpha=np.ones(3)).sample(size=30),
            #    "correct": None
            # }
            #{
            #    "priors": (exp_prior, exp_prior),
            #    "likelihood": gamma.med(),
            #    "data": gamma.med(a=1.0, b=1.0).sample(size=30),
            #    "correct": None
            #},
            #{
            #    "priors": gam_prior,
            #    "likelihood": geometric.med(),
            #    "data": geometric.sample(probability=0.1, size=30),
            #    "correct": None
            #},
            ## {
            #    "priors": (exp_prior, exp_prior, exp_prior),
            #    "likelihood": hypergeometric.med(),
            #    "data": hypergeometric.sample(N=6, K=3, n=2, size=30),
            #    "correct": None
            # },
            # {
            #   "priors": (exp_prior, multivariate_normal.med(mu=np.ones(3), sigma=np.eye(3))),
            #   "likelihood": multinomial.med(),
            #   "data": multinomial.sample(n=3, probabilities=np.ones(3) / 3, size=30),
            #   "correct": None
            # },
            # {
            #   "priors": (exp_prior, exp_prior, exp_prior, exp_prior),
            #   "likelihood": normal_inverse_gamma.med(),
            #   "data": normal_inverse_gamma.sample(mu=1.0, lam=1.0, a=2.0, b=2.0, size=30),
            #   "correct": None
            # },
            # {
            #   "priors": exp_prior,
            #   "likelihood": poisson.med(),
            #   "data": poisson.sample(lam=2.0, size=30),
            #   "correct": None
            # },
            # {
            #   "priors": (exp_prior, exp_prior),
            #   "likelihood": uniform.med(),
            #   "data": uniform.sample(a=0, b=1, size=30),
            #   "correct": None
            # },
            # {
            #   "priors": (multivariate_normal.med(mu=np.zeros(2), sigma=np.eye(2)),
            #              multivariate_normal.med(mu=np.ones(2), sigma=np.eye(2))),
            #   "likelihood": multivariate_uniform.med(),
            #   "data": multivariate_uniform.sample(a=np.zeros(2), b=np.ones(2), size=30),
            #   "correct": None
            # },
        )

        for test in tests:
            _run_test(**test)
Пример #13
0
    def test_mcmc_moment_matching(self):
        def _run_test(prior=None,
                      likelihood=None,
                      data=None,
                      match=None,
                      correct=None):
            posterior = parameter_posterior(data,
                                            likelihood=likelihood,
                                            mode="mcmc",
                                            prior=prior,
                                            samples=500,
                                            batch=40,
                                            match_moments_for=match)

            if correct is not None:
                pass  # TODO
            print(posterior)
            print("\n\n")

        fast_n = normal.fast_p

        def _custom_likelihood(y, x, w):
            return fast_n(y - (x * w[0] + w[1]), mu=0.0, sigma=0.3)

        a, b = np.ones(2) * -2, np.ones(2) * 2
        sigma = np.eye(2)
        mu = np.zeros(2)
        x = np.linspace(-1, 1, 100)
        y = x * 2 + 0.5 + normal.sample(mu=0.0, sigma=0.3, size=100)

        tests = [{
            "prior": multivariate_normal.med(mu=mu, sigma=sigma),
            "likelihood": _custom_likelihood,
            "data": (y, x),
            "match": multivariate_normal,
            "correct": None
        }, {
            "prior": exponential.med(lam=0.6),
            "likelihood": normal.med(sigma=1.0),
            "data": normal.sample(mu=3.0, sigma=2.0, size=200),
            "match": normal,
            "correct": None
        }, {
            "prior":
            multivariate_uniform.med(a=a, b=b),
            "likelihood":
            multivariate_normal.med(sigma=sigma),
            "data":
            multivariate_normal.sample(mu=mu, sigma=sigma, size=100),
            "match":
            multivariate_normal,
            "correct":
            None,
        }, {
            "prior": multivariate_uniform.med(a=np.zeros(2), b=np.ones(2)),
            "likelihood": unilinear.med(sigma=1.0),
            "data": (y, x),
            "match": (multivariate_normal, exponential),
            "correct": None
        }]

        for test in tests:
            _run_test(**test)
Пример #14
0
    def test_conjugates(self):
        def _run_test(prior=None, likelihood=None, data=None, correct=None):
            posterior = parameter_posterior(data,
                                            likelihood=likelihood,
                                            prior=prior,
                                            samples=1000)

            if correct is not None:
                pass  # TODO

        mu_prior, sigma_prior = np.ones(2), np.eye(2)
        probabilities = np.array([0.3, 0.2, 0.2, 0.2, 0.1])
        x = np.linspace(0, 1, 10).reshape(-1, 1)
        y = x.flatten() + 1 + normal.sample(mu=0.0, sigma=1e-1, size=10)
        tests = [
            {
                "prior": normal.med(mu=1.0, sigma=1.0),
                "likelihood": normal.med(sigma=2.0),
                "data": normal.med(mu=-2.0, sigma=2.0).sample(size=200),
                "correct": None
            },
            {
                "prior": normal_inverse_gamma.med(mu=1.0,
                                                  lam=2.0,
                                                  a=3.0,
                                                  b=3.0),
                "likelihood": normal.med(),
                "data": normal.med(mu=-2.0, sigma=2.0).sample(size=200),
                "correct": None
            },
            {
                "prior":
                multivariate_normal.med(mu=mu_prior, sigma=sigma_prior),
                "likelihood":
                multivariate_normal.med(sigma=sigma_prior),
                "data":
                multivariate_normal.med(mu=mu_prior,
                                        sigma=sigma_prior).sample(size=200),
                "correct":
                None
            },
            {
                "prior": beta.med(a=1.0, b=3.0),
                "likelihood": bernoulli.med(),
                "data": bernoulli.med(probability=0.6).sample(size=200),
                "correct": None
            },
            {
                "prior":
                dirichlet.med(alpha=np.ones(5)),
                "likelihood":
                categorical.med(categories=5),
                "data":
                categorical.med(probabilities=probabilities).sample(size=200),
                "correct":
                None
            },
            {
                "prior": gamma.med(a=9, b=2),
                "likelihood": exponential.med(),
                "data": exponential.med(lam=1.0).sample(size=200),
                "correct": None
            },
            {
                "prior": beta.med(a=6.0, b=3.0),
                "likelihood": binomial.med(n=5),
                "data": binomial.med(n=5, probability=0.7).sample(size=200),
                "correct": None
            },
            {
                "prior":
                dirichlet.med(alpha=np.ones(3)),
                "likelihood":
                multinomial.med(n=3),
                "data":
                multinomial.med(n=3,
                                probabilities=np.ones(3) / 3).sample(size=100),
                "correct":
                None
            },
            {
                "prior": gamma.med(a=9.0, b=2.0),
                "likelihood": poisson.med(),
                "data": poisson.med(lam=2).sample(size=200),
                "correct": None
            },
            {
                "prior": beta.med(a=6.0, b=3.0),
                "likelihood": geometric.med(),
                "data": geometric.med(probability=0.7).sample(size=200),
                "correct": None
            },
            {
                "prior": multivariate_normal.med(mu=mu_prior,
                                                 sigma=sigma_prior),
                "likelihood": unilinear.med(sigma=0.1),
                "data": (y, x),
                "correct": None
            },
            {
                "prior": multivariate_normal.med(mu=mu_prior,
                                                 sigma=sigma_prior),
                "likelihood": unilinear.med(sigma=0.1),
                "data": (1.0, 2.0),
                "correct": None
            },
            {
                "prior": normal.med(mu=1.0, sigma=1.0),
                "likelihood": normal.med(sigma=2.0),
                "data": 2.0,
                "correct": None
            },
            {
                "prior": normal_inverse_gamma.med(mu=1.0,
                                                  lam=2.0,
                                                  a=3.0,
                                                  b=3.0),
                "likelihood": normal.med(),
                "data": 2.0,
                "correct": None
            },
            {
                "prior": multivariate_normal.med(mu=mu_prior,
                                                 sigma=sigma_prior),
                "likelihood": multivariate_normal.med(sigma=sigma_prior),
                "data": np.zeros(2),
                "correct": None
            },
            {
                "prior": beta.med(a=1.0, b=3.0),
                "likelihood": bernoulli.med(),
                "data": 1,
                "correct": None
            },
            {
                "prior": dirichlet.med(alpha=np.ones(5)),
                "likelihood": categorical.med(categories=5),
                "data": 3,
                "correct": None
            },
            {
                "prior": gamma.med(a=9, b=2),
                "likelihood": exponential.med(),
                "data": 5.1,
                "correct": None
            },
            {
                "prior": beta.med(a=6.0, b=3.0),
                "likelihood": binomial.med(n=5),
                "data": 4,
                "correct": None
            },
            {
                "prior": dirichlet.med(alpha=np.ones(3)),
                "likelihood": multinomial.med(n=3),
                "data": [1, 1, 1],
                "correct": None
            },
            {
                "prior": gamma.med(a=9.0, b=2.0),
                "likelihood": poisson.med(),
                "data": 7,
                "correct": None
            },
            {
                "prior": beta.med(a=6.0, b=3.0),
                "likelihood": geometric.med(),
                "data": 6,
                "correct": None
            },
        ]

        for test in tests:
            _run_test(**test)