(comm_block.Get_size() - 1), elastic_lr=args.elastic_lr, elastic_momentum=args.elastic_momentum) else: algo = Algo(args.optimizer, loss=args.loss, validate_every=validate_every, sync_every=args.sync_every, worker_optimizer=args.worker_optimizer) os.environ['KERAS_BACKEND'] = backend #import_keras() block = process_block.ProcessBlock(comm_world, comm_block, algo, data, device, model_provider, args.epochs, train_list, val_list, folds=args.n_fold, num_masters=args.n_master, num_process=args.n_process, verbose=args.verbose, early_stopping=args.early_stopping, target_metric=args.target_metric, monitor=args.monitor) block.label = args.label block.run()
param_ranges, model_fn) opt_coordinator.run(num_iterations=30) else: data = H5Data(batch_size=args.batch, features_name='Images', labels_name='Labels') data.set_file_names(train_list) validate_every = data.count_data() / args.batch algo = Algo(args.optimizer, loss=args.loss, validate_every=validate_every, sync_every=args.sync_every) os.environ['KERAS_BACKEND'] = backend import_keras() import keras.callbacks as cbks callbacks = [] if args.early_stopping is not None: callbacks.append( cbks.EarlyStopping(patience=args.early_stopping, verbose=1)) block = process_block.ProcessBlock(comm_world, comm_block, algo, data, device, args.epochs, train_list, val_list, callbacks, verbose=args.verbose) block.run()