Пример #1
0
def search_image(imagename):
    with open(VOC_FILE, 'rb') as f:
        voc = cPickle.load(f)

    locs, descr = sift.read_features_from_file(get_sift_filename(imagename))
    iw = voc.project(descr)

    src = Searcher(DB_FILE, voc)
    print 'ask using a histogram ...'
    print src.candidates_from_histogram(iw)[:5]

    print 'try a query ...'
    for dist, imid in src.query(imagename)[:5]:
        cur = src.con.execute('select filename from imlist where rowid=%d' % imid)
        print '%s(%d)' % (cur.fetchone()[0], dist)
Пример #2
0
def index_images(imlist):
    featlist = [ get_sift_filename(i) for i in imlist ]

    # load vocabulary
    with open(VOC_FILE, 'rb') as f:
        voc = cPickle.load(f)

    # create indexer
    indx = Indexer(DB_FILE, voc)
    indx.create_tables()

    # go through all images, project features on vocabulary and insert
    for imagefile, siftfile in zip(imlist, featlist):
        locs, descr = sift.read_features_from_file(siftfile)
        indx.add_to_index(imagefile, descr)

    indx.db_commit()